
Başlık:
Infrastructure robotics : methodologies, robotic systems and applications
Yazar:
Liu, Dikai, editor.
ISBN:
9781394162871
9781394162864
9781394162857
Fiziksel Tanımlama:
1 online resource (xxi, 402 pages) illustrations (chiefly color)
Seri:
IEEE Press series on systems science and engineering ; 23
IEEE Press series on systems science and engineering.
İçerik:
About the Editors xv -- Preface xix -- Acronyms xxi -- Part I Methodologies 1 -- 1 Infrastructure Robotics: An Introduction 3 Dikai Liu and Gamini Dissanayake -- 1.1 Infrastructure Inspection and Maintenance 3 -- 1.2 Infrastructure Robotics 6 -- 1.2.1 Inspection and Maintenance of Steel Bridges 7 -- 1.2.2 Climbing and Wheeled Robots for Inspection of Truss Structures 8 -- 1.2.3 Robots for Underwater Infrastructure Maintenance 10 -- 1.3 Considerations in Infrastructure Robotics Research 11 -- 1.4 Opportunities and Challenges 13 -- 1.5 Concluding Remarks 15 -- Bibliography 15 -- 2 Design of Infrastructure Robotic Systems 19 Kenneth Waldron -- 2.1 Special Features of Infrastructure 19 -- 2.2 The Design Process 20 -- 2.3 Types of Robots and Their Design and Operation 21 -- 2.4 Software System Design 23 -- 2.5 An Example: Development of the CROC Design Concept 23 -- 2.6 Some Other Examples 27 -- 2.7 Actuator Systems 30 -- 2.8 Concluding Remarks 31 -- Bibliography 31 -- 3 Perception in Complex and Unstructured Infrastructure Environments 33 Shoudong Huang, Kai Pan, and Gamini Dissanayake -- 3.1 Introduction 33 -- 3.2 Sensor Description 35 -- 3.2.1 2D LiDAR 35 -- 3.2.2 3D LiDAR 35 -- 3.2.3 Sonar 36 -- 3.2.4 Monocular Camera 36 -- 3.2.5 Stereo Camera 36 -- 3.2.6 GRB-D Camera 37 -- 3.3 Problem Description 37 -- 3.4 Theoretical Foundations 38 -- 3.4.1 Extended Kalman Filter 39 -- 3.4.2 Nonlinear Least Squares 40 -- 3.4.3 Environment Representations 42 -- 3.4.4 Mapping Techniques 44 -- 3.4.5 Localization Techniques 47 -- 3.4.6 SLAM Techniques 49 -- 3.5 Implementation 53 -- 3.5.1 Localization 54 -- 3.5.2 Slam 54 -- 3.6 Case Studies 55 -- 3.6.1 Mapping in Confined Space 55 -- 3.6.2 Localization in Confined Space 55 -- 3.6.3 SLAM in Underwater Bridge Environment 56 -- 3.7 Conclusion and Discussion 56 -- Bibliography 57 -- 4 Machine Learning and Computer Vision Applications in Civil Infrastructure Inspection and Monitoring 59 Shuming Liang, Andy Guo, Bin Liang, Zhidong Li, Yu Ding, Yang Wang, and Fang Chen -- 4.1 Introduction 59 -- 4.2 GNN-Based Pipe Failure Prediction 60 -- 4.2.1 Background 60 -- 4.2.2 Problem Formulation 61 -- 4.2.3 Data Preprocessing 61 -- 4.2.4 GNN Learning 62 -- 4.2.5 Failure Pattern Learning 64 -- 4.2.6 Failure Predictor 65 -- 4.2.7 Experimental Study 65 -- 4.3 Computer Vision-Based Signal Aspect Transition Detection 67 -- 4.3.1 Background 67 -- 4.3.2 Signal Detection Model 67 -- 4.3.3 Track Detection Model 69 -- 4.3.4 Optimization for Target Locating 72 -- 4.4 Conclusion and Discussion 75 -- Bibliography 77 -- 5 Coverage Planning and Motion Planning of Intelligent Robots for Civil Infrastructure Maintenance 81 Mahdi Hassan and Dikai Liu -- 5.1 Introduction to Coverage and Motion Planning 81 -- 5.2 Coverage Planning Algorithms for a Single Robot 82 -- 5.2.1 An Offline Coverage Planning Algorithm 82 -- 5.2.2 A Real-Time Coverage Planning Algorithm 86 -- 5.3 Coverage Planning Algorithms for Multiple Robots 90 -- 5.3.1 Base Placement Optimization 90 -- 5.3.2 Area Partitioning and Allocation 93 -- 5.3.3 Adaptive Coverage Path Planning 97 -- 5.4 Conclusion 101 -- Bibliography 102 -- 6 Methodologies in Physical Human-Robot Collaboration for Infrastructure Maintenance 105 Marc G. Carmichael, Antony Tran, Stefano Aldini, and Dikai Liu -- 6.1 Introduction 105 -- 6.2 Autonomy, Tele-Operation, and pHRC 106 -- 6.2.1 Autonomous Robots 106 -- 6.2.2 Teleoperated Robots 108 -- 6.2.3 Physical Human-Robot Collaboration 109 -- 6.3 Control Methods 110 -- 6.3.1 Motion Control 110 -- 6.3.2 Force Control 111 -- 6.4 Adaptive Assistance Paradigms 113 -- 6.4.1 Manually Adapted Assistance 114 -- 6.4.2 Assistance-As-Needed Paradigms 115 -- 6.4.3 Performance-Based Assistance 115 -- 6.4.4 Physiology-Based Assistance 116 -- 6.5 Safety Framework for pHRC 117 -- 6.6 Performance-Based Role Change 119 -- 6.7 Case Study 121 -- 6.8 Discussion 122 -- Acknowledgements 123 -- Bibliography 123 -- Part II Robotic System Design and Applications 127 -- 7 Steel Bridge Climbing Robot Design and Development 129 Hung M. La -- 7.1 Introduction 129 -- 7.2 Recent Climbing Robot Platforms Developed by the ARA Lab 133 -- 7.3 Overall Design 134 -- 7.3.1 Mechanical Design and Analysis 136 -- 7.4 Overall Control Architecture 140 -- 7.4.1 Control System Framework 141 -- 7.5 Experiment Results 148 -- 7.5.1 Switching Control 149 -- 7.5.2 Robot Navigation in Mobile and Worming Transformation 152 -- 7.5.3 Robot Deployment 153 -- 7.6 Conclusion and Future Work 155 -- Bibliography 156 -- 8 Underwater Robots for Cleaning and Inspection of Underwater Structures 161 Andrew Wing Keung To, Khoa Le, and Dikai Liu -- 8.1 Introduction to Maintenance of Underwater Structures 161 -- 8.2 Robot System Design 163 -- 8.2.1 Hull Design and Maneuvering System 164 -- 8.2.2 Robot Arms for Docking and Water-Jet Cleaning 164 -- 8.3 Sensing and Perception in Underwater Environments 166 -- 8.3.1 Underwater Simultaneous Localization and Mapping (SLAM) Around Bridge Piles 167 -- 8.3.2 Marine Growth Identification 168 -- 8.4 Software Architecture 170 -- 8.5 Robot Navigation, Motion Planning and System Integration 170 -- 8.5.1 Localization and Navigation in Open Water 170 -- 8.5.2 System Integration 173 -- 8.6 Testing in a Lab Setup and Trials in the Field 174 -- 8.6.1 Operation Procedure 174 -- 8.6.2 Autonomous Navigation in Narrow Environments 176 -- 8.6.3 Vision-Based Marine Growth Removing Process 178 -- 8.6.4 Inspection and Marine Growth Identification 179 -- 8.7 Reflection and Lessons Learned 180 -- 8.8 Conclusion and Future Work 181 -- Acknowledgments 182 -- Bibliography 182 -- 9 Tunnel Structural Inspection and Assessment Using an Autonomous Robotic System 185 Juan G. Victores, E. Menendez, and C. Balaguer -- 9.1 Introduction 185 -- 9.2 ROBO-SPECT Project 186 -- 9.2.1 Robotic System 187 -- 9.2.2 Intelligent Global Controller 191 -- 9.2.3 Ground Control Station 192 -- 9.2.4 Structural Assessment Tool 192 -- 9.3 Inspection Procedure 192 -- 9.4 Extended Kalman Filter for Mobile Vehicle Localization 195 -- 9.5 Mobile Vehicle Navigation 197 -- 9.6 Field Experimental Results 198 -- 9.7 Conclusion 201 -- Bibliography 201 -- 10 BADGER: Intelligent Robotic System for Underground Construction 205 Santiago Martínez, Marcos Marín, Elisabeth Menéndez, Panagiotis Vartholomeos, Dimitrios Giakoumis, Alessandro Simi, and Carlos Balaguer -- 10.1 Introduction 205 -- 10.2 Boring Systems and Methods 207 -- 10.2.1 Directional Drilling Methods 207 -- 10.2.2 Drilling Robotic Systems 209 -- 10.3 Main Drawbacks 210 -- 10.4 BADGER System and Components 212 -- 10.4.1 Main Systems Description 212 -- 10.4.2 BADGER Operation 215 -- 10.5 Future Trends 218 -- Bibliography 218 -- 11 Robots for Underground Pipe Condition Assessment 221 Jaime Valls Miro -- 11.1 Introduction to Ferro-Magnetic Pipeline Maintenance 221 -- 11.1.1 NDT Inspection Taxonomy 222 -- 11.2 Inspection Robots 223 -- 11.2.1 Robot Kinematics and Locomotion 224 -- 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping 228 -- 11.3.1 Hardware and Software System Architecture 230 -- 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data 232 -- 11.4.1 Gaussian Processes 234 -- 11.5 Field Robotic CA Inspection Results 236 -- 11.6 Concluding Remarks 240 -- Bibliography 240 -- 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes 243 Sarath Kodagoda, Vinoth Kumar Viswanathan, Karthick Thiyagarajan, Antony Tran, Sathira Wickramanayake, Steve Barclay, and Dammika Vitanage -- 12.1 Introduction 243 -- 12.2 Nondestructive Sensing System for Condition Assessment of Sewer Walls 245 -- 12.3 Robotic Tool for Field Deployment 252 -- 12.4 Laboratory Evaluation 254 -- 12.5 Field Deployment and Evaluation 255 -- 12.6 Lessons Learned and Future Directions 258 -- 12.7 Concluding Remarks 259 -- Bibliography 260 -- 13 A Climbing Robot for Maintenance Operations in Confined Spaces 263 Gibson Hu, Dinh Dang Khoa Le, and Dikai Liu -- 13.1 Introduction 263 -- 13.2 Robot Design 265 -- 13.3 Methodologies 271 -- 13.3.1 Perception 271 -- 13.3.2 Control 274 -- 13.3.3 Planning of Robot Body Motion 279 -- 13.4 Experiments and Results 279 -- 13.4.1 Experiment Setup 279 -- 13.4.2 Lab Test Results 280 -- 13.4.3 Field Trials in a Steel Bridge 282 -- 13.5 Discussion 283 -- 13.6 Conclusion 283 -- Bibliography 284 -- 14 Multi-UAV Systems for Inspection of Industrial and Public Infrastructures 285 Alvaro Caballero, Julio L. Paneque, Jose R.
Martinez-de-Dios, Ivan Maza, and Anibal Ollero -- 14.1 Introduction 285 -- 14.2 Multi-UAV Inspection of Electrical Power Systems 287 -- 14.2.1 Use Cases 287 -- 14.2.2 Architecture 288 -- 14.3 Inspection Planning 289 -- 14.3.1 Vehicle Routing Problem 289 -- 14.4 Onboard Online Semantic Mapping 296 -- 14.4.1 GNSS-Endowed Mapping System 296 -- 14.4.2 Reflectivity and Geometry-Based Semantic Classification 297 -- 14.4.3 Validation 298 -- 14.5 Conclusion 300 -- Bibliography 302 -- 15 Robotic Platforms for Inspection of Oil Refineries 305 Mauricio Calva -- 15.1 Refining Oil for Fuels and Petrochemical Basics 305 -- 15.2 The Inspection Process 307 -- 15.3 Inspection and Mechanical Integrity of Oil Refinery Components 310 -- 15.3.1 Liquid Storage Tank Inspection 310 -- 15.3.2 Pressurized Vessels Inspection 312 -- 15.3.3 Process Pipping 314 -- 15.3.4 Heat Exchanger Bundles 315 -- 15.4 Plant Operations, Surveillance, Maintenance Activities, and Others 316 -- 15.4.1 Surveillance, Operations, and Maintenance of Oil and Gas Refineries 316 -- 15.4.2 Safety and Security 318 -- 15.4.3 Utilities and Support Activities 318 -- 15.5 Robotic Systems for Inspection 319 -- 15.5.1 Robotics for Storage Tanks 320 -- 15.5.2 Robotics for Pressure Vessels 324 -- 15.5.3 Robotics for Process Piping 328 -- 15.5.4 Robotics Heat Exchanger Bundles 331 -- 1 ...
Özet:
"Maintaining civil infrastructure assets, including bridges, tunnels, water mains pipes, power and telecommunication transmission towers, underwater wharf piles and sewers, has traditionally been labor intensive, and often hazardous for workers. It has also been strictly constrained by humans' limits and health/safety requirements. Three aspects of maintenance that are common to a variety of types of infrastructure include inspection, preventative and rehabilitation actions, and assessment of condition and asset management. The need for safe, efficient, and effective infrastructure maintenance has led to a desire, across industry sectors, to automate maintenance operations. Intelligent robots, that can work either on their own or collaboratively with humans in a complex (e.g. steel bridges) or dynamically changing (e.g. underwater) structural environment, provide a very promising solution to automating maintenance operations."-- Provided by publisher.
Notlar:
John Wiley and Sons
Yazar Ek Girişi:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394162871Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 598706-1001 | TJ211 .I48144 2024 | Arıyor... | Arıyor... |
