
Başlık:
Clean and renewable energy production
Yazar:
Mondal, Surajit, editor.
ISBN:
9781394174805
9781394174799
9781394174782
Fiziksel Tanımlama:
1 online resource (555 pages)
İçerik:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Vegetable Seed Oils as Biofuel: Need, Motivation, and Research Identifications -- 1.1 Introduction to Vegetable Oils -- 1.2 Motivation -- 1.3 Need of Research -- 1.3.1 Biodiesel Considerations -- 1.3.2 Energy Balance and Security -- 1.3.3 Air Quality -- 1.3.4 Engine Function -- 1.3.5 Safety -- 1.4 Detailed Survey -- 1.5 Identification of the Research Gaps -- 1.5.1 Toxicity -- 1.5.2 Biodegradability -- 1.6 Conclusions -- References -- Chapter 2 Methodology and Instrumentation for Biofuel with Study on Cashew Nut Shell Liquid -- 2.1 Methodology -- 2.2 Procedure -- 2.2.1 Common Points -- 2.3 Fourier Transform Infrared Spectroscopy -- 2.4 Gas Chromatography-Mass Spectrometry -- 2.5 Nuclear Magnetic Resonance -- 2.6 CNSL Study -- 2.7 Conclusions -- References -- Chapter 3 Emerging Technologies for Sustainable Energy Applications -- 3.1 Introduction -- 3.2 Carbon Dioxide Sequestration -- 3.2.1 Biological Carbon Sequestration -- 3.2.2 Geological Carbon Sequestration -- 3.2.3 Technological Carbon Sequestration -- 3.2.4 Hydrate-Based CO2 Sequestration Technology -- 3.2.5 Carbon Sinks and Types -- 3.2.5.1 Estuarine Ecology as Sediment Carbon -- 3.2.5.2 Mangroves and Mudflat Soils as Carbon Sink -- 3.2.5.3 Tidal Marsh Soils as Carbon Sink -- 3.2.5.4 Soils of Coastal Agroecosystem as Carbon Sink -- 3.2.5.5 Sediments of Marine Coastal Ecologies as Carbon Sink -- 3.2.6 CO2 Sequestration Utilization in Enhanced Oil Recovery -- 3.3 Carbon Capture, Utilization, and Storage -- 3.3.1 Global CCUS Development -- 3.3.2 Risk Analysis of CCUS -- 3.4 Renewable Energy -- 3.4.1 Solar Energy -- 3.4.2 Hydro Energy -- 3.4.3 Geothermal Energy -- 3.4.4 Biomass Energy -- 3.4.5 Wind Energy -- 3.5 Conclusion -- References -- Chapter 4 Affordable and Clean Energy: Natural Gas Hydrates and Hydrogen Storage.
4.1 Introduction -- 4.2 Gas Hydrates -- 4.2.1 Extraction Methodologies -- 4.2.1.1 Thermal Stimulation Method -- 4.2.1.2 Depressurization Method -- 4.2.1.3 Inhibitor Injection Method -- 4.2.1.4 Gas Exchange Method -- 4.2.2 Geological Hazards -- 4.2.2.1 Hydrate-Associated Risks for Oil and Gas Exploitation -- 4.2.3 Sustainable Applications -- 4.2.4 Solidified Natural Gas -- 4.2.5 Seawater Desalination -- 4.2.6 CO2 Sequestration and Methane Recovery -- 4.2.7 Gas Separation -- 4.3 Hydrogen Energy -- 4.3.1 Types of H2 -- 4.3.2 Hydrogen Storage -- 4.3.2.1 Compressed Gas -- 4.3.2.2 Underground Hydrogen Storage -- 4.3.2.3 Liquid Hydrogen -- 4.3.2.4 Solid Storage -- 4.3.3 H2 as Fuel -- 4.3.4 Industrial Applications of H2 -- 4.4 Recent Advancement Toward Clean Energy Applications -- 4.5 Conclusion -- References -- Chapter 5 Wind and Solar PV System-Based Power Generation: Imperative Role of Hybrid Renewable Energy Technology -- 5.1 Introduction -- 5.2 Renewable Energy for Sustainable Development -- 5.3 Global Energy Scenario -- 5.4 Solar Energy Potential -- 5.5 Wind Potential for Power Generation -- 5.6 Hybrid Renewable Energy Systems -- 5.7 Pros and Cons of the Hybrid Renewable Energy System -- 5.7.1 Pros of the Hybrid Renewable Energy System -- 5.7.2 Cons of the Hybrid Renewable Energy System -- 5.8 Conclusion -- References -- Chapter 6 A Systematic Review of the Last Decade for Advances in Photosynthetic Microbial Fuel Cells with Bioelectricity Generation -- 6.1 Introduction -- 6.2 Background -- 6.3 Methodology -- 6.4 Study Selection Criteria -- 6.5 Configurations and Performance Evaluation of Photosynthetic Microbial Fuel Cells -- 6.5.1 Algal-Based p-MFC -- 6.5.2 Plant-Microbial Fuel Cells or P-MFCs -- 6.6 Outlook -- Data Availability Statement -- Funding -- Conflict of Interest -- References.
Chapter 7 Hydrothermal Liquefaction as a Sustainable Strategy for Integral Valorization of Agricultural Waste -- 7.1 Introduction -- 7.2 Generation of Biofuels -- 7.3 Biomass Conversion Routes -- 7.4 HTL Reaction Mechanism -- 7.5 HTL Process Yield Calculations -- 7.6 HTL Advantage Over Pyrolysis -- 7.6.1 Energy Content from the Biomass -- 7.6.2 Bio-Oil and Bio-Coal Yields -- 7.6.3 Oxygen Content in Bio-Oil -- 7.6.4 Carbon Content Utilization -- 7.6.5 No Pretreatment and Drying -- 7.6.6 Energy Saving -- 7.7 Types of Reactors for the Hydrothermal Liquefaction Process -- 7.7.1 Batch Reactor -- 7.7.2 Continuous Reactor -- 7.7.2.1 Continuous Plug Flow Reactor -- 7.7.2.2 Continuous Stirred Tank Reactor -- 7.8 Influence of Operating Parameters -- 7.8.1 Biomass Type -- 7.8.2 Operating Temperature -- 7.8.3 Heating Rate -- 7.8.4 Residence Time -- 7.8.5 Pressure -- 7.8.6 Type of Catalyst -- 7.9 Product Distribution and Evaluation -- 7.9.1 Liquid (Bio-Oil) -- 7.9.2 Solid (Hydrochar) -- 7.9.3 Aqueous Water and Gases -- 7.10 Potential Applications of HTL Products -- 7.11 Challenges and Limitations of the HTL Process -- 7.12 Techno-Economic and Environmental Analysis -- 7.13 Conclusions -- References -- Chapter 8 Imperative Role of Proton Exchange Membrane Fuel Cell System and Hydrogen Energy Storage for Modern Electric Vehicle Transportation: Challenges and Future Perspectives -- 8.1 Introduction -- 8.2 Modeling of the PEMFC System -- 8.3 Electrical Vehicle Categories -- 8.4 Hydrogen Energy Storage -- 8.4.1 Hydrogen Energy Production: Approaches with Challenges -- 8.4.2 Methods of Hydrogen Energy Storage: Approaches and Challenges -- 8.5 Future Scope, Challenges, and Benefits of FCEVs -- 8.6 Pros and Cons of Electric Vehicles in the Aspect of Modern Transportation System -- 8.7 MATLAB/Simulink Study of FC-Powered Electric Drive System -- 8.8 Conclusion.
Chapter 12 Waste to Energy Technologies for Energy Recovery -- 12.1 Introduction -- 12.2 Preparation Methods -- 12.3 Carbonization and Activation -- 12.3.1 Uses of Carbonization -- 12.3.2 Uses of Activation -- 12.3.2.1 Phosphoric Acid Activation -- 12.3.2.2 Zinc Chloride Activation -- 12.3.2.3 Potassium Hydroxide Activation -- 12.3.2.4 Potassium Carbonate Activation -- 12.3.2.5 Nitric Acid Activation -- 12.4 Electrode Materials Extracted from Biowastes -- 12.4.1 Carbon Nanotube -- 12.4.2 Graphene Oxide -- 12.4.3 Carbon Aerogel -- 12.4.4 Activated Carbon -- 12.5 Energy Storage Applications -- 12.6 Importance of Electrolyte -- 12.7 Conclusions -- References -- Chapter 13 A Review of Electrolysis Techniques to Produce Hydrogen for a Futuristic Hydrogen Economy -- 13.1 Introduction -- 13.1.1 Chemistry Behind Electrolysis -- 13.1.2 Step 1 -- 13.1.3 Step 2 -- 13.1.4 Anion Exchange Membrane Water Electrolysis -- 13.2 Methodology -- 13.2.1 Search Strategy -- 13.2.2 Search Scope -- 13.2.3 Search Method -- 13.2.4 Search String -- 13.2.5 Study Selection Criteria -- 13.3 Configurations and Performance Evaluation of AEM Electrolyzer -- 13.4 Scope for Improvements -- 13.5 Conclusion -- References -- Chapter 14 Prospects of Sustainability for Carbon Footprint Reduction -- 14.1 Introduction -- 14.2 Context and Outcomes of the United Nations Climate Change Framework -- 14.3 Monitoring Direct and Indirect Carbon Emissions -- 14.4 Sustainable Alternatives to Reduce Carbon Footprints -- 14.4.1 Policies for Reducing Carbon Footprints -- 14.4.2 Technologies and Strategies Designed for Specific Sectors -- 14.4.3 Innovative Carbon Reduction Strategies and Technologies -- 14.4.3.1 Buildings and Cities -- 14.4.3.2 Transportation -- 14.4.4 Societal Contribution Toward Carbon Reduction -- 14.5 Carbon Elimination from the Atmosphere -- 14.6 Outlook -- Conflict of Interest.
Özet:
CLEAN and RENEWABLE ENERGY PRODUCTION According to the World Renewable Energy Council (WREC), by the year 2100, the world's population will increase to 12 billion and the worldwide energy demand will increase steeply to about five times the present scenario. Researchers are striving to find alternative forms of energy, and this quest is strongly forced by the increasing worry over climate change and planetary heating. Among the diverse varieties of alternative energy sources, biomass has the singular advantage of being carbon neutral. The carbon that is discharged to the atmosphere during its exercise is read back during the utilization of biomass resources for energy output. Currently, biomass provides approximately 13% of the world's primary energy supply and more than 75% of global renewable energy. Indeed, it is estimated that bioenergy could contribute 25-33% of the global energy supply by 2050. Continued adoption of biomass will require efficient conversion rates and avoidance of competition with food and fibers. This book focuses on the recent practices in clean energy and renewable energy. The contributors highlight how newer technologies are reducing the dependency on non-renewable resources, benefiting the researchers who are working in the area of clean and renewable energy production. This new volume will also benefit mechanical engineers, electrical engineers, and bioengineers as they will be updated with the recent work progressing all over the globe. It will benefit the professionals working in the renewable energy sector such as solar, wind, hydrothermal, hydrogen, and bioenergy, including professors, research scholars, industry professionals, and students working in this field.
Notlar:
John Wiley and Sons
Tür:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394174805Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 598882-1001 | TJ808 .C54 2024 | Arıyor... | Arıyor... |
