Organic polymers in energy-environmental applications için kapak resmi
Başlık:
Organic polymers in energy-environmental applications
Yazar:
Oraon, Ramesh, editor.
ISBN:
9783527842810

9783527842797

9783527842803
Fiziksel Tanımlama:
1 online resource
İçerik:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Organic Polymers: Past and the Present -- 1.1 Introduction and History of Polymers -- 1.2 Classification of Organic Polymers -- 1.3 Synthesis and Properties of Polymers -- 1.3.1 Polyamides -- 1.3.2 Nylon-6,6 -- 1.3.3 Nylon-6 -- 1.3.4 Polyesters -- 1.3.5 Polyethylene Terephthalate (PET) -- 1.3.6 Polycarbonates -- 1.3.7 Polyurethanes -- 1.3.7.1 Properties of Polyurethanes -- 1.3.8 Epoxy Resin -- 1.3.8.1 Properties of Epoxy Resin -- 1.3.9 Phenol Formaldehyde Resin -- 1.3.9.1 Properties of Phenol Formaldehyde Resin -- 1.3.10 Polyethene -- 1.3.11 Coordination Polymerization -- 1.3.12 Polyvinylchloride -- 1.3.13 Polytetrafluoroethylene (PTFE) -- 1.3.14 Application of Natural Polymers -- 1.3.15 Application of Synthetic Polymers -- 1.3.16 Recent Advances in Organic Polymers -- 1.4 Conclusion and Future Scope -- References -- Chapter 2 Basics of Polymerizations and Application Toward Organic Materials -- 2.1 Introduction -- 2.2 Preparation of Covalent Organic Framework (COF) -- 2.2.1 Hydrazone-Based COF -- 2.2.1.1 Boron-Containing COF -- 2.2.1.2 Imide-Based COF -- 2.2.1.3 Imine-Based COF -- 2.2.1.4 Azine-Based COF -- 2.2.1.5 sp2-Hybridized Carbon-Conjugated COF -- 2.2.2 Preparation of Covalent Triazine Framework (CTF) -- 2.2.3 Preparation of Hyper Cross-linked Polymers (HCP) -- 2.2.4 Preparation of Nitrogen-Containing Porous Organic Polymers -- 2.2.5 Preparation of Melamine-Formaldehyde (MF) Spheres -- 2.2.6 Preparation of Nitrogen-Rich Microporous Carbon -- 2.2.7 Preparation of Conjugated Microporous Polymer (CMP) -- 2.2.8 Synthesis of Organic Polymeric Membranes -- 2.3 Application Toward Organic Materials -- 2.3.1 Application of Porous Organic Polymers for Separation of Organic Gas -- 2.3.2 Catalytic Application of POPs.

2.3.2.1 Porphyrin-Based Functionalized POPs for Catalytic Application -- 2.3.2.2 Application of Chiral Porous Organic Polymer in Asymmetric Catalysis -- 2.3.3 Application of POPs as Adsorbent for Volatile Organic Compounds -- 2.3.4 Application of POPs for Chemical Sensor -- 2.4 Conclusions -- References -- Chapter 3 Organic Polymers Fabrication for Solar Cells -- 3.1 Introduction -- 3.1.1 Parameter that Describes the Effectiveness of Solar Cells -- 3.1.2 Generation of Solar Cells -- 3.2 Organic Solar Cells -- 3.2.1 General Considerations -- 3.2.2 Working Mechanism -- 3.2.3 Architecture of OSCs -- 3.2.4 Preparation Techniques -- 3.2.4.1 Spin Coating -- 3.2.4.2 Blade Coating -- 3.2.4.3 Inkjet Printing -- 3.3 The Role of Organic Polymers in Solar Cells and Their Recent Progress -- 3.4 Conclusion -- References -- Chapter 4 Supercapacitor Energy Storage Incorporating Conjugated Microporous Polymer -- 4.1 Introduction -- 4.1.1 Challenges -- 4.2 Microporous Polymer Material -- 4.3 Conclusion -- Conflicts of Interest -- References -- Chapter 5 Modification of Surface Properties of Polymeric Materials: Methodological Approaches and Applications -- 5.1 Introduction -- 5.2 Physical Treatment for Polymer Surface Modification -- 5.3 Chemical Treatment for Polymer Surface Modification -- 5.4 Plasma Treatment for Polymer Surface Modification -- 5.4.1 Addition of Functional Group on Polymer Surfaces -- 5.4.2 Introduction of Roughness on the Polymer Surface -- 5.4.3 Formation of Crosslinking -- 5.5 Corona Treatment for Polymer Surface Modification -- 5.5.1 Modification in the Top Layer -- 5.5.2 Factors Affecting the Course and Effectiveness of Corona Treatment -- 5.5.2.1 Parameters Controlling Optimum Treatment -- 5.5.2.2 Remedies and Causes of Treatment by Reverse Lateral -- 5.5.2.3 Effects of Additives in Corona Treatment -- 5.5.2.4 Treatment Time -- 5.5.2.5 Aging.

5.6 UV Treatment for Polymer Surface Modification -- 5.7 Surface Patterning Treatment for Polymer Surface Modification -- 5.7.1 Instability-Induced Polymer Patterning -- 5.7.2 Patterning by Dewetting -- 5.7.3 Patterning by Evaporation -- 5.7.4 Patterning by Electric Field Gradient -- 5.7.5 Patterning by Thermal Gradient -- 5.7.6 Photolithography -- 5.7.7 Patterning by Block Copolymers -- 5.7.8 Microcontact Printing -- 5.7.9 Nanoimprinting Lithography -- 5.7.10 Laser Surface Texturing (LST) -- 5.8 Thermal Annealing Treatment for Polymer Surface Modification -- 5.9 Conclusion -- References -- Chapter 6 Organic Polymers as Potential Catalysts -- 6.1 Introduction -- 6.1.1 Organic Polymer Photocatalysis (OPP) -- 6.1.2 The Mechanism of Photocatalysis -- 6.2 Recent Development of Porous Organic Polymer (POP) -- 6.3 Metal-Organic Framework (MOF)-Based Heterogeneous Catalysis -- 6.3.1 MOFs Chemistry -- 6.3.2 Active Sites of MOFs for Heterogeneous Catalysis -- 6.3.3 Active Sites at Organic Linkers -- 6.3.4 MOFs-Based Composites for Heterogeneous Catalysis -- 6.3.5 MOF-Molecular Species Composites -- 6.3.6 MOF-Metal Nanoparticle Composites -- 6.3.7 MOF-Polyoxometalate Composites -- 6.3.8 MOF-Enzyme Composites -- 6.3.9 MOF-Based Heterogeneous Polymerization Catalysts -- 6.4 Reversible Deactivation Radical Polymerization (RDRP) -- 6.5 Coordination Polymerization -- 6.6 Covalent Organic Frameworks (COFs)-Based Heterogeneous Catalysis -- 6.6.1 COFs Chemistry -- 6.6.2 Structural Origins of COFs for Various Heterogeneous Catalyses -- 6.6.3 Classification of COFs-Based Catalyst -- 6.6.4 Applications of COFs as Heterogeneous Catalyst -- 6.6.4.1 COFs with Reactive Skeletons for Heterogeneous Catalysis -- 6.6.4.2 COFs with Reactive Pendant Groups for Heterogeneous Catalysis -- 6.6.4.3 COFs with Reactive Metals for Heterogeneous Catalysis.

6.6.4.4 COFs with Molecular Catalysts for Heterogeneous Catalysis -- 6.7 Polymer-Based Homogeneous Catalysis -- 6.8 Conclusion -- References -- Chapter 7 Environmental Fate of Water-Soluble Cellulosic-Polymer-Based Composites -- 7.1 Introduction -- 7.2 Starch: A Widely Known Water-Soluble Polymer -- 7.2.1 Structure of Starch -- 7.2.2 Advantages and Drawbacks of Starch as a Polymer -- 7.2.3 Modification of Starch -- 7.2.3.1 Grafting -- 7.2.3.2 Blending -- 7.2.3.3 Crosslinking Agent -- 7.2.3.4 Plasticizers -- 7.2.3.5 Use of Nanofillers -- 7.3 Carboxymethyl Cellulose (CMC) -- 7.3.1 Structure and Synthesis -- 7.3.2 Advantages of CMC -- 7.3.3 Drawbacks of CMC -- 7.3.4 Modification of CMC -- 7.4 Properties of Water-Soluble Polymer-Based Composites -- 7.4.1 Mechanical Properties -- 7.4.2 Thermal Resistance Properties -- 7.4.3 Water Resistance and Dimensional Properties -- 7.4.4 Chemical Resistance Properties -- 7.5 Conclusion and Future Prospects -- References -- Chapter 8 Future Roadmap of Organic Polymers -- 8.1 Introduction -- 8.1.1 Hypercross-linked Polymers (HCPs) -- 8.1.2 Aromatic Frameworks with Pores (PAFs) -- 8.1.3 Covalent Organic Frameworks (COFs) -- 8.2 Polymers of Intrinsic Microporosity -- 8.2.1 Water Purification -- 8.2.2 Catalysis -- 8.2.3 Supercapacitors -- 8.2.4 Removal of Organic Pollutants from Water -- 8.2.5 Template Synthesis Methods of Porous Organic Polymers -- 8.2.6 Reaction Elaborated in the Chemical Synthesis of Porous Organic Polymers -- 8.3 Conclusion -- References -- Chapter 9 Covalent-Organic Frameworks (COF): An Advanced Generation of Reticular Organic Polymers for Energy and Environmental Applications -- 9.1 Introduction -- 9.2 Synthesis -- 9.3 COFs as Thin Films -- 9.4 Polygon Skeletons -- 9.5 Pore Engineering -- 9.5.1 Pore Design -- 9.5.2 Increasing the Vulnerability of the Active Sites.

9.5.3 Pore Surface Engineering for Environmental Application -- 9.6 Thermal Stability -- 9.7 Advantages Over Conventional Polymers -- 9.8 Backbone Modifications -- 9.8.1 Linkage Conversion -- 9.8.2 Linker Changing -- 9.9 Functional Group Changes -- 9.9.1 Inverse Vulcanization -- 9.9.2 Thiol-ene Rx -- 9.10 COFs on Different Scales -- 9.11 Terracotta Process -- 9.12 Pyrolysis of COFs -- 9.13 COFs in Mitigation of Pollutants and Organic Dyes -- 9.14 COFs for Energy Applications -- 9.14.1 Hydrogen Evolution Reaction (HER) -- 9.14.2 Oxygen Evolution Reaction (OER) -- 9.14.3 Oxygen reduction Reaction (ORR) -- 9.14.4 Bifunctional OER/ORR Catalysts -- 9.14.5 Carbon Dioxide Reduction Reaction (CO2RR) -- 9.15 COFs in Batteries and Supercapacitors -- 9.16 Batteries -- 9.16.1 COFs as Electrode Materials -- 9.16.2 Battery Additives and Functional Separators -- 9.17 Supercapacitors -- 9.18 Electrochemical Sensors -- 9.19 Proton-Exchange Membrane Fuel Cells (PEMFC) -- 9.19.1 Low-Temperature Conductivity -- 9.19.2 Degradation -- 9.20 Conclusion -- References -- Chapter 10 A Multifunctional Polymer - POLYOX - and Its Uses as a Novel Drug-Delivery System -- 10.1 Introduction -- 10.1.1 Grades of POLYOX -- 10.2 Advantages of Using POLYOX -- 10.3 Physical and Chemical Constituents -- 10.3.1 Pharmaceutical Property -- 10.3.2 Characteristics -- 10.4 Release Mechanism -- 10.5 Ocular Drug Administration -- 10.5.1 POLYOX in Osmotic Pump Systems -- 10.6 Drug Delivery for the Gastroretentive System -- 10.7 Film with a Fast Turnaround Time -- 10.8 Extended Duration of Effect -- 10.9 Regulatory Aspects of POLYOX -- 10.10 The Consistency of POLYOX -- 10.11 Conclusion -- References -- Chapter 11 Green Synthesis of Polymers and Its Application in Industry -- 11.1 Introduction -- 11.2 Polymer -- 11.2.1 Naturally Occurring Polymer -- 11.2.1.1 Natural Polymer Examples.
Özet:
Enables readers to understand core concepts behind organic polymers and their multifunctional applications, focusing on environmental and sustainable applications Organic Polymers in Energy-Environmental Applications provides comprehensive coverage of polymerization and functionalization of organic polymers, followed by innovative approaches, sustainable technologies, and solutions for energy and environmental applications, including environmental remediation, energy storage, corrosion protection, and more. Edited by five highly qualified academics with significant experience in the field, Organic Polymers in Energy-Environmental Applications includes discussion on: * Characteristics and emerging trends of organic polymers, and organic polymers in imaging industries and curable coatings * Antifouling technology based on organic polymers and wearable technology featuring multifunctional sensor arrays in biomedicine * Organic bio-adhesive polymers in filter technology, nano-architectured organic polymers, and market dynamics of organic polymer-based technologies * Organic and inorganic modifications of polymers, pollutant removal via organic polymers, and biodegradable organic polymers * Life cycle assessment of organic polymers, applications of organic polymers in agriculture, and future outlooks of the field With complete coverage of organic polymers, a topic of high interest due to their numerous practical applications ranging from membranes to super capacitors, Organic Polymers in Energy-Environmental Applications is an essential resource for polymer and environmental chemists, materials scientists, and all other related researchers and professionals interested in the subject.
Notlar:
John Wiley and Sons
Yazar Ek Girişi:
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 599370-1001 TP248.65 .P62 O74 2025
Arıyor...

On Order