Mechanics of flexible and stretchable electronics için kapak resmi
Başlık:
Mechanics of flexible and stretchable electronics
Yazar:
Zhu, Yong, editor.
ISBN:
9783527842308

9783527842285
Fiziksel Tanımlama:
1 online resource
İçerik:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Materials -- Chapter 1 Extreme Mechanics of Hydrogels Toward In Situ Hydrogel Bioelectronics -- 1.1 Introduction -- 1.2 Extreme Properties of Hydrogels by Polymer Network Design -- 1.2.1 Elastic Modulus -- 1.2.2 Fracture Toughness -- 1.2.3 Fatigue Threshold -- 1.2.4 Mass Transport -- 1.3 Stretchable Hydrogel Conductors -- 1.3.1 Multiscale Orthogonal Design -- 1.3.2 Implementations of the Orthogonal Design -- 1.4 Electrochemical Hydrogel Biosensors -- 1.4.1 Selective Transport Design of Hydrogels -- 1.4.2 Electrochemical Design of Hydrogel-2D Material Interfaces -- 1.5 Flexible Hydrogel Biobattery -- 1.5.1 Mechanical Energy Harvester -- 1.5.2 Chemical Energy Harvesters -- 1.5.3 Thermal Energy Harvesters -- 1.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Multiscale Mechanics of Metal Nanowire-Based Stretchable Electronics -- 2.1 Introduction -- 2.2 Metal NW-Based Flexible and Stretchable Electronics -- 2.3 Mechanics of Individual NWs -- 2.3.1 Overview of Mechanics of Metal NWs -- 2.3.2 Mechanics of Single-Crystalline Metal NWs -- 2.3.3 Mechanics of Bi-Twinned Metal NWs -- 2.3.4 Mechanics of Penta-Twinned Metal NWs -- 2.4 Interfacial Mechanics of the NW-Polymer Interface -- 2.4.1 Classic Theory of Shear-Lag Analysis -- 2.4.2 Shear-Lag Analysis Considering Bonding Mechanisms -- 2.4.3 Fracture of NWs Due to Shear Stress Transfer -- 2.4.4 Elastoplastic Analysis of Metal NWs -- 2.5 Mechanical Design of Stretchable Structures -- 2.5.1 Buckle-Delamination Enabled Stretchable Silver Nanowire Conductors -- 2.5.2 A Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Advancing and Opening -- 2.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Liquid Metal-Based Electronics -- 3.1 Introduction -- 3.1.1 Ga-Based Liquid Metals.

3.1.2 Relevant Literature -- 3.2 LM Architectures -- 3.2.1 Microfluidic LM Channels -- 3.2.1.1 Printing-Based Deposition Methods -- 3.2.1.2 Direct LM Casting -- 3.2.2 LM-Coated Thin-Film Metal Traces -- 3.2.3 LM-Polymer Composites -- 3.2.4 Printable LM-Based Inks -- 3.3 Mechanics and Modeling -- 3.3.1 Microfluidic LM Strain Gauge -- 3.3.2 Microfluidic LM Pressure Sensor -- 3.3.3 LM-Polymer Composites -- 3.3.3.1 Electrical Permittivity and Thermal Conductivity -- 3.3.3.2 Electromechanical Coupling -- 3.3.3.3 Effective Young's Modulus -- 3.4 Open Challenges and Future Directions -- References -- Chapter 4 Mechanics of Two-Dimensional Materials -- 4.1 Introduction -- 4.2 Nanoindentation Method -- 4.3 AFM-Enabled Nanoindentation -- 4.3.1 Setup of AFM-Enabled Nanoindentation -- 4.3.2 Mechanical Testing of 2D Materials -- 4.3.2.1 Mechanical Testing of Graphene -- 4.3.2.2 Mechanical Testing of Graphene Oxide (GO) -- 4.3.2.3 Mechanical Testing of MoS2 -- 4.3.2.4 Mechanical Testing of WSe2 -- 4.3.2.5 Mechanical Testing of h-BN -- 4.3.2.6 Mechanical Testing of Black Phosphor (BP) -- 4.4 In Situ Indentation in SEM -- 4.4.1 Raman Spectroscopy -- 4.5 Micro-/Nano-mechanical Devices -- 4.5.1 Category of Micromechanical Devices -- 4.5.1.1 Thermal Actuated Micromechanical Devices -- 4.5.1.2 Micromechanical Devices with Push-Pull Mechanism -- 4.5.2 Development of the "Dry-Transfer" Technique -- 4.5.3 Mechanical Testing of 2D Materials -- 4.5.3.1 Mechanical Testing of Graphene -- 4.5.3.2 Mechanical Testing of Rebar Graphene -- 4.5.3.3 Mechanical Testing of MoSe2 -- 4.5.3.4 Mechanical Testing of h-BN -- 4.6 Piezoelectric Tube-Driven Testing in TEM -- 4.7 Bulge Testing -- 4.7.1 Depressurize Inside and Form a Concave Deflection in Film -- 4.7.2 Depressurize Outside and Form a Convex Deflection in Film -- 4.8 Electrostatic Force Triggered Drum Structure.

4.9 Phonon Dispersion Measurement -- 4.10 Summary -- 4.10.1 Mechanical Testing Techniques -- 4.10.2 Mechanical Properties of 2D Materials -- Disclosure Statement -- References -- Chapter 5 Mechanics of Flexible and Stretchable Organic Electronics -- 5.1 Introduction -- 5.2 Mechanical Characterization Methods -- 5.2.1 Tensile Tests -- 5.2.2 Fracture Toughness -- 5.2.3 Thermomechanical Behavior -- 5.3 Material Design -- 5.3.1 Molecular Weight -- 5.3.2 Backbone and Side-Chain Design -- 5.3.3 Regioregularity and Crystallinity -- 5.3.4 Block Copolymers with Flexible and Stretchable Linkers -- 5.3.5 Crosslinking and Hydrogen Bonding -- 5.3.6 Additives and Blends -- 5.3.7 Organic Photovoltaic Considerations -- 5.4 Device Design -- 5.4.1 Neutral Axis and Ultrathin Devices -- 5.4.2 Film Thickness -- 5.4.3 Electrodes and Interlayers -- 5.4.4 Interfaces -- 5.4.5 Stretchable Device Architecture -- 5.5 Applications -- 5.6 Conclusion -- Acknowledgments -- References -- Part II Design and Manufacturing -- Chapter 6 Structural Design of Flexible and Stretchable Electronics -- 6.1 Introduction -- 6.2 Design of Planar Stretchable and Flexible Structures -- 6.2.1 Wave/Wrinkle Structure Design -- 6.2.2 Island-Bridge Structure Design -- 6.2.2.1 Straight Interconnecting Island-Bridge Structure -- 6.2.2.2 Serpentine Interconnecting Island-Bridge Structure -- 6.2.2.3 Fractal-Inspired Interconnecting Island-Bridge Structure -- 6.3 Design of Three-Dimensional Flexible Electronic Structures -- 6.3.1 Helical Design -- 6.3.2 Origami-Inspired Design -- 6.3.3 Kirigami-Inspired Design -- 6.4 Design of Protective Structures for Flexible Electronic Devices -- 6.4.1 Strain Limited Structure Design -- 6.4.2 Strain Isolation Structure Design -- References -- Chapter 7 Laser-Based Fabrication Process Development for Flexible and Stretchable Electronics -- 7.1 Introduction.

7.2 Representative Laser-Based Fabrication Process -- 7.3 Applications Based on Laser Fabrication -- 7.4 Perspectives and Conclusion -- Author Contributions -- References -- Chapter 8 Electrospinning Manufacturing of Stretchable Electronics -- 8.1 Background -- 8.2 High-Precision Manufacturing -- 8.2.1 Inkjet Printing -- 8.2.2 EHD Printing -- 8.3 Electrospinning Stretchable Structure -- 8.3.1 Stretchable Nanofiber Mats -- 8.3.2 Stretchable Yarns and Fabrics -- 8.4 Application in Stretchable Electronics -- 8.4.1 Strain and Pressure Sensor -- 8.4.2 Organic Field-Effect Transistors -- 8.4.3 Optoelectronic Devices -- 8.5 Conclusions -- References -- Chapter 9 Mechanics-Guided 3D Assembly of Flexible Electronics -- 9.1 Introduction -- 9.2 Design Strategies of Mechanics-Guided Assembly -- 9.2.1 2D Precursor Designs -- 9.2.1.1 Origami/Kirigami Design Strategy -- 9.2.1.2 Multilayer and Multilevel Design Strategy -- 9.2.1.3 Design Strategy Based on Spatial Stiffness Control -- 9.2.2 Elastomer Substrate Designs -- 9.2.2.1 Engineered Planar Substrate Design Strategy -- 9.2.2.2 Curvilinear Substrate Design Strategy -- 9.2.3 Strategy of Loading Conditions -- 9.2.3.1 Mechanical Loading Strategy -- 9.2.3.2 Electric/Magnetic-Field-Assisted Loading Strategy -- 9.3 Mechanics Modeling and Analyses of the 3D Assembly -- 9.3.1 Buckling Analysis of 2D Precursors -- 9.3.1.1 Straight Ribbons -- 9.3.1.2 Helical Structures -- 9.3.1.3 Frame Structures -- 9.3.1.4 2D Curved Ribbons -- 9.3.2 Interfacial Adhesion in the Mechanics-Guided Assembly -- 9.3.2.1 Design Diagrams of Delamination States -- 9.3.2.2 Controlled Interface Delamination -- 9.3.3 Loading-Path Controlled Assembly -- 9.3.3.1 Reconfigurable Cross-Shaped Structures -- 9.3.3.2 Reconfigurable Structures Harnessing Interface Mechanics -- 9.4 Applications of 3D Flexible Electronics -- 9.4.1 Flexible Sensors.

9.4.2 Tunable Electromagnetic Devices -- 9.4.3 Biomedical Devices -- 9.4.4 Flexible Robotics -- 9.5 Concluding Remarks -- References -- Chapter 10 Harnessing Wrinkling and Buckling Instabilities for Stretchable Devices and Healthcare -- 10.1 Introduction -- 10.2 Structural Designs and Mechanics -- 10.2.1 Structural Designs for Buckling-Enabled Stretchability -- 10.2.2 Mechanics of Wrinkling and Buckling -- 10.2.2.1 Compression-Induced Wrinkling -- 10.2.2.2 Compression-Induced Constrained Buckle-Delamination -- 10.2.2.3 Compression-Induced Spontaneous Buckle-Delamination -- 10.2.2.4 Tension-Induced Buckling in Serpentine Structures -- 10.2.2.5 Tension-Induced Buckling in Kirigami Structures -- 10.3 Applications in Stretchable Devices -- 10.3.1 Stretchable Sensors -- 10.3.2 Stretchable Batteries -- 10.3.3 Other Stretchable Electronics -- 10.4 Applications in Healthcare -- 10.4.1 Biosensors -- 10.4.2 Biological Interfaces -- 10.5 Conclusion and Outlook -- Acknowledgments -- References -- Part III Applications -- Chapter 11 Spherical Indentation Behavior of Soft Electronics -- 11.1 Spherical Indentation of the Semi-infinite Solid -- 11.1.1 General Solution for Elastic Solid with Displacement Function -- 11.1.2 Indentation Behavior of Revolution Indenter -- 11.1.3 Indentation Behavior of Spherical Indenter -- 11.2 Applications in a Force-Softness Bimodal Sensor Array for Human Body Feature Identification -- 11.2.1 Design of the Spherical Indenter-Based Force-Softness Sensor -- 11.2.1.1 The First Stage -- 11.2.1.2 The Second Stage -- 11.2.2 Integration of the Force-Softness Sensor Array: Tactile Glove -- 11.2.3 Applications in Body Feature Identification -- 11.3 Applications in a Self-Locked Young's Modulus Sensor for Quantifying the Softness of Swollen Tissues in the Clinic -- 11.3.1 Design of the Fingertip Modulus Sensor.
Özet:
Discover a comprehensive overview and advances in mechanics to design the cutting edge electronics Soft electronics systems, which include flexible and stretchable electronics, are an area of technology with the potential to revolutionize fields from healthcare to defense. Engineering for flexibility and stretchability without compromising electronic functions poses serious challenges, and extensive mechanics and engineering knowledge is required to meet these challenges. Mechanics of Flexible and Stretchable Electronics introduces a range of soft functional materials and soft structures and their potential applications in the construction of soft electronics systems. Its detailed attention to the mechanics of these materials and structures makes it an indispensable tool for scientists and engineers at the cutting edge of electronics technology. Mechanics of Flexible and Stretchable Electronics readers will also find: * A detailed summary of recent advances in the field * Detailed treatment of structures including kirigami, serpentine, wrinkles, and many more * A multidisciplinary approach suited to a varied readership Mechanics of Flexible and Stretchable Electronics is ideal for electronics and mechanical engineers, solid state physicists, and materials scientists, as well as the libraries that support them.
Notlar:
John Wiley and Sons
Yazar Ek Girişi:
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 599394-1001 TK7872 .F54 M43 2025
Arıyor...

On Order