Generative AI, cybersecurity, and ethics için kapak resmi
Başlık:
Generative AI, cybersecurity, and ethics
Yazar:
Islam, Ray (Mohammad Rubyet), author.
ISBN:
9781394279302

9781394279319

9781394279326
Fiziksel Tanımlama:
1 online resource
Genel Not:
Includes index.
İçerik:
List of Figures xxiii -- List of Tables xxv -- Endorsements xxvii -- About the Author xxxi -- Preface xxxiii -- Acknowledgements xxxv -- 1 Introduction 1 -- 1.1 Artificial Intelligence (AI) 1 -- 1.1.1 Narrow AI (Weak AI) 2 -- 1.1.2 General AI (Strong AI) 2 -- 1.2 Machine Learning (ML) 3 -- 1.3 Deep Learning 3 -- 1.4 Generative AI 4 -- 1.4.1 GenAI vs. Other AI 5 -- 1.5 Cybersecurity 6 -- 1.6 Ethics 7 -- 1.7 AI to GenAI: Milestones and Evolutions 8 -- 1.7.1 1950s: Foundations of AI 8 -- 1.7.2 1960s: Early AI Developments 9 -- 1.7.3 1970s-1980s: AI Growth and AI Winter 9 -- 1.7.4 1990s: New Victory 9 -- 1.7.5 2010s: Rise of GenAI 10 -- 1.8 AI in Cybersecurity 10 -- 1.8.1 Advanced Threat Detection and Prevention 10 -- 1.8.2 Real-Time Adaptation and Responsiveness 11 -- 1.8.3 Behavioral Analysis and Anomaly Detection 11 -- 1.8.4 Phishing Mitigation 11 -- 1.8.5 Harnessing Threat Intelligence 11 -- 1.8.6 GenAI in Cybersecurity 12 -- 1.9 Introduction to Ethical Considerations in GenAI 12 -- 1.9.1 Bias and Fairness 12 -- 1.9.2 Privacy 12 -- 1.9.3 Transparency and Explainability 13 -- 1.9.4 Accountability and Responsibility 13 -- 1.9.5 Malicious Use 13 -- 1.9.6 Equity and Access 13 -- 1.9.7 Human Autonomy and Control 14 -- 1.10 Overview of the Regional Regulatory Landscape for GenAI 14 -- 1.10.1 North America 14 -- 1.10.2 Europe 15 -- 1.10.3 Asia 15 -- 1.10.4 Africa 15 -- 1.10.5 Australia 15 -- 1.11 Tomorrow 15 -- 2 Cybersecurity: Understanding the Digital Fortress 17 -- 2.1 Different Types of Cybersecurity 17 -- 2.1.1 Network Security 17 -- 2.1.2 Application Security 19 -- 2.1.3 Information Security 20 -- 2.1.4 Operational Security 21 -- 2.1.5 Disaster Recovery and Business Continuity 22 -- 2.1.6 Endpoint Security 22 -- 2.1.7 Identity and Access Management (IAM) 23 -- 2.1.8 Cloud Security 24 -- 2.1.9 Mobile Security 24 -- 2.1.10 Critical Infrastructure Security 24 -- 2.1.11 Physical Security 25 -- 2.2 Cost of Cybercrime 25 -- 2.2.1 Global Impact 25 -- 2.2.2 Regional Perspectives 27 -- 2.2.2.1 North America 27 -- 2.2.2.2 Europe 28 -- 2.2.2.3 Asia 28 -- 2.2.2.4 Africa 28 -- 2.2.2.5 Latin America 29 -- 2.3 Industry-Specific Cybersecurity Challenges 30 -- 2.3.1 Financial Sector 30 -- 2.3.2 Healthcare 30 -- 2.3.3 Government 31 -- 2.3.4 E-Commerce 31 -- 2.3.5 Industrial and Critical Infrastructure 32 -- 2.4 Current Implications and Measures 32 -- 2.5 Roles of AI in Cybersecurity 33 -- 2.5.1 Advanced Threat Detection and Anomaly Recognition 33 -- 2.5.2 Proactive Threat Hunting 34 -- 2.5.3 Automated Incident Response 34 -- 2.5.4 Enhancing IoT and Edge Security 34 -- 2.5.5 Compliance and Data Privacy 35 -- 2.5.6 Predictive Capabilities in Cybersecurity 35 -- 2.5.7 Real-Time Detection and Response 35 -- 2.5.8 Autonomous Response to Cyber Threats 36 -- 2.5.9 Advanced Threat Intelligence 36 -- 2.6 Roles of GenAI in Cybersecurity 36 -- 2.7 Importance of Ethics in Cybersecurity 37 -- 2.7.1 Ethical Concerns of AI in Cybersecurity 37 -- 2.7.2 Ethical Concerns of GenAI in Cybersecurity 38 -- 2.7.3 Cybersecurity-Related Regulations: A Global Overview 39 -- 2.7.3.1 United States 39 -- 2.7.3.2 Canada 39 -- 2.7.3.3 United Kingdom 41 -- 2.7.3.4 European Union 42 -- 2.7.3.5 Asia-Pacific 42 -- 2.7.3.6 Australia 43 -- 2.7.3.7 India 43 -- 2.7.3.8 South Korea 43 -- 2.7.3.9 Middle East and Africa 43 -- 2.7.3.10 Latin America 44 -- 2.7.4 UN SDGs for Cybersecurity 45 -- 2.7.5 Use Cases for Ethical Violation of GenAI Affecting Cybersecurity 46 -- 2.7.5.1 Indian Telecom Data Breach 46 -- 2.7.5.2 Hospital Simone Veil Ransomware Attack 46 -- 2.7.5.3 Microsoft Azure Executive Accounts Breach 46 -- 3 Understanding GenAI 47 -- 3.1 Types of GenAI 48 -- 3.1.1 Text Generation 49 -- 3.1.2 Natural Language Understanding (NLU) 49 -- 3.1.3 Image Generation 49 -- 3.1.4 Audio and Speech Generation 50 -- 3.1.5 Music Generation 50 -- 3.1.6 Video Generation 50 -- 3.1.7 Multimodal Generation 50 -- 3.1.8 Drug Discovery and Molecular Generation 51 -- 3.1.9 Synthetic Data Generation 51 -- 3.1.10 Predictive Text and Autocomplete 51 -- 3.1.11 Game Content Generation 52 -- 3.2 Current Technological Landscape 52 -- 3.2.1 Advancements in GenAI 52 -- 3.2.2 Cybersecurity Implications 52 -- 3.2.3 Ethical Considerations 54 -- 3.3 Tools and Frameworks 54 -- 3.3.1 Deep Learning Frameworks 54 -- 3.4 Platforms and Services 56 -- 3.5 Libraries and Tools for Specific Applications 58 -- 3.6 Methodologies to Streamline Life Cycle of GenAI 60 -- 3.6.1 Machine Learning Operations (MLOps) 60 -- 3.6.2 AI Operations (AIOps) 62 -- 3.6.3 MLOps vs. AIOps 63 -- 3.6.4 Development and Operations (DevOps) 65 -- 3.6.5 Data Operations (DataOps) 66 -- 3.6.6 ModelOps 67 -- 3.7 A Few Common Algorithms 67 -- 3.7.1 Generative Adversarial Networks 67 -- 3.7.2 Variational Autoencoders (VAEs) 69 -- 3.7.3 Transformer Models 70 -- 3.7.4 Autoregressive Models 70 -- 3.7.5 Flow-Based Models 71 -- 3.7.6 Energy-Based Models (EBMs) 71 -- 3.7.7 Diffusion Models 71 -- 3.7.8 Restricted Boltzmann Machines (RBMs) 72 -- 3.7.9 Hybrid Models 72 -- 3.7.10 Multimodal Models 72 -- 3.8 Validation of GenAI Models 73 -- 3.8.1 Quantitative Validation Techniques 73 -- 3.8.2 Advanced Statistical Validation Methods 76 -- 3.8.3 Qualitative and Application-Specific Evaluation 77 -- 3.9 GenAI in Actions 78 -- 3.9.1 Automated Journalism 78 -- 3.9.2 Personalized Learning Environments 78 -- 3.9.3 Predictive Maintenance in Manufacturing 79 -- 3.9.4 Drug Discovery 79 -- 3.9.5 Fashion Design 80 -- 3.9.6 Interactive Chatbots for Customer Service 80 -- 3.9.7 Generative Art 80 -- 4 GenAI in Cybersecurity 83 -- 4.1 The Dual-Use Nature of GenAI in Cybersecurity 83 -- 4.2 Applications of GenAI in Cybersecurity 84 -- 4.2.1 Anomaly Detection 84 -- 4.2.2 Threat Simulation 85 -- 4.2.3 Automated Security Testing 86 -- 4.2.4 Phishing Email Creation for Training 86 -- 4.2.5 Cybersecurity Policy Generation 86 -- 4.2.6 Deception Technologies 86 -- 4.2.7 Threat Modeling and Prediction 87 -- 4.2.8 Customized Security Measures 87 -- 4.2.9 Report Generation and Incident Reporting Compliance 87 -- 4.2.10 Creation of Dynamic Dashboards 87 -- 4.2.11 Analysis of Cybersecurity Legal Documents 88 -- 4.2.12 Training and Simulation 88 -- 4.2.13 GenAI for Cyber Defense for Satellites 88 -- 4.2.14 Enhanced Threat Detection 88 -- 4.2.15 Automated Incident Response 89 -- 4.3 Potential Risks and Mitigation Methods 89 -- 4.3.1 Risks 89 -- 4.3.1.1 AI-Generated Phishing Attacks 89 -- 4.3.1.2 Malware Development 89 -- 4.3.1.3 Adversarial Attacks Against AI Systems 90 -- 4.3.1.4 Creation of Evasive Malware 91 -- 4.3.1.5 Deepfake Technology 91 -- 4.3.1.6 Automated Vulnerability Discovery 91 -- 4.3.1.7 AI-Generated Disinformation 91 -- 4.3.2 Risk Mitigation Methods for GenAI 91 -- 4.3.2.1 Technical Solutions 92 -- 4.3.2.2 Incident Response Planning 94 -- 4.4 Infrastructure for GenAI in Cybersecurity 96 -- 4.4.1 Technical Infrastructure 96 -- 4.4.1.1 Computing Resources 96 -- 4.4.1.2 Data Storage and Management 98 -- 4.4.1.3 Networking Infrastructure 99 -- 4.4.1.4 High-Speed Network Interfaces 100 -- 4.4.1.5 AI Development Platforms 101 -- 4.4.1.6 GenAI-Cybersecurity Integration Tools 102 -- 4.4.2 Organizational Infrastructure 104 -- 4.4.2.1 Skilled Workforce 104 -- 4.4.2.2 Training and Development 105 -- 4.4.2.3 Ethical and Legal Framework 106 -- 4.4.2.4 Collaboration and Partnerships 107 -- 5 Foundations of Ethics in GenAI 111 -- 5.1 History of Ethics in GenAI-Related Technology 111 -- 5.1.1 Ancient Foundations 111 -- 5.1.2 The Industrial Era 112 -- 5.1.3 20th Century 113 -- 5.1.4 The Rise of Computers and the Internet 113 -- 5.1.5 21st Century: The Digital Age 113 -- 5.1.6 Contemporary Ethical Frameworks 113 -- 5.2 Basic Ethical Principles and Theories 113 -- 5.2.1 Metaethics 114 -- 5.2.2 Normative Ethics 114 -- 5.2.3 Applied Ethics 115 -- 5.3 Existing Regulatory Landscape: The Role of International Standards and Agreements 115 -- 5.3.1 ISO/IEC Standards 116 -- 5.3.1.1 For Cybersecurity 116 -- 5.3.1.2 For AI 117 -- 5.3.1.3 Loosely Coupled with GenAI 118 -- 5.3.2 EU Ethics Guidelines 118 -- 5.3.3 UNESCO Recommendations 119 -- 5.3.4 OECD Principles on AI 119 -- 5.3.5 G7 and G20 Summits 121 -- 5.3.6 IEEE's Ethically Aligned Design 121 -- 5.3.7 Asilomar AI Principles 121 -- 5.3.8 AI4People's Ethical Framework 122 -- 5.3.9 Google's AI Principles 123 -- 5.3.10 Partnership on AI 123 -- 5.4 Why Separate Ethical Standards for GenAI? 124 -- 5.5 United Nation's Sustainable Development Goals 125 -- 5.5.1 For

Cybersecurity 125 -- 5.5.2 For AI 125 -- 5.5.3 For GenAI 127 -- 5.5.4 Alignment of Standards with SDGs for AI, GenAI, and Cybersecurity 127 -- 5.6 Regional Approaches: Policies for AI in Cybersecurity 128 -- 5.6.1 North America 128 -- 5.6.1.1 The United States of America 128 -- 5.6.1.2 Canada 131 -- 5.6.2 Europe 131 -- 5.6.2.1 EU Cybersecurity Strategy 131 -- 5.6.2.2 United States vs. EU 134 -- 5.6.2.3 United Kingdom 134 -- 5.6.3 Asia 135 -- 5.6.3.1 China 135 -- 5.6.3.2 Japan 136 -- 5.6.3.3 South Korea 136 ...
Özet:
"Generative AI (GenAI) is set to revolutionize cybersecurity by greatly improving threat detection, risk analysis, and response strategies, thus enhancing digital security. Governments and private organizations worldwide are increasingly recognizing the need for specific ethical and regulatory policies tailored to AI and cybersecurity. However, GenAI presents unique challenges not found in other AI sectors. The emergence of technologies like ChatGPT and advanced deepfake creation, which showcase GenAI's potential in cybersecurity, highlights the importance of targeted focus in this field. As GenAI continues to advance, it is expected that corresponding ethical and regulatory frameworks will also evolve, addressing critical issues such as data privacy, consent, and accountability that are particularly relevant to the rapid progress and implementation of GenAI."-- Provided by publisher.
Notlar:
John Wiley and Sons
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 599597-1001 QA76.9 .A25
Arıyor...

On Order