Climate change and crop stress : molecules to ecosystems için kapak resmi
Başlık:
Climate change and crop stress : molecules to ecosystems
Yazar:
Shanker, Arun K.
ISBN:
9780128165355
Yayın Bilgileri:
London, UK : Academic Press, [2022]
Fiziksel Tanımlama:
1 online resource
İçerik:
Front Cover -- Climate Change and Crop Stress -- Copyright Page -- Contents -- List of contributors -- About the editors -- Foreword -- 1 Breeding climate-resilience crops for future agriculture -- 1.1 Introduction -- 1.2 Abiotic stresses -- 1.2.1 Drought -- 1.2.2 Salinity -- 1.2.3 Heat stress -- 1.3 Breeding methodologies for climate-resilient crops -- 1.3.1 Traditional breeding -- 1.3.1.1 Germplasm introduction -- 1.3.1.2 Hybridization -- 1.3.1.3 Population breeding -- 1.3.2 Molecular breeding -- 1.3.3 Genetic engineering -- 1.4 Conclusion -- References -- 2 Drought and heat stress combination in a changing climate -- 2.1 Introduction -- 2.2 Integrated effects of drought and heat stress on field crops -- 2.2.1 Growth and development -- 2.2.2 Yield attributes -- 2.3 Genetics and genomics of heat and drought stress -- 2.4 Physiological and biochemical responses of heat and drought stress -- 2.4.1 Water and nutrient relationships -- 2.4.2 Photosynthetic pigments -- 2.4.3 Photosynthesis -- 2.4.4 Translocation of assimilates -- 2.4.5 Antioxidant defense versus oxidative damage -- 2.4.6 Grain and nutritional quality -- 2.5 Strategies for improving tolerance -- 2.5.1 Breeding for stress tolerance -- 2.5.2 Biotechnological approaches -- 2.5.3 Agronomical practices -- 2.5.4 Prompting stress tolerance by exogenous agents -- 2.5.5 Application of GIS and crop modeling technologies -- 2.6 Conclusions and way forward -- References -- 3 Elevated atmospheric CO2 induced changes in nitrogen metabolism and crop quality -- 3.1 Introduction -- 3.2 Elevated CO2 and N availability determines crop productivity, accumulation of ROS/RNS, and N metabolism -- 3.2.1 Impact of EC on N uptake and assimilation -- 3.2.2 Impact of EC on ROS and RNS production -- 3.3 CO2 induced changes in crop quality -- 3.3.1 Plant N concentration in response to EC.

3.3.2 Leaf protein and amino acid content under rising CO2 -- 3.3.3 Grain yield and quality as affected by rising CO2 -- 3.4 Conclusion -- References -- 4 Combined salinity and waterlogging stress in plants: limitations and tolerance mechanisms -- 4.1 Introduction -- 4.2 Morphological limitation on plants under combined salt and waterlogged conditions -- 4.3 Physiological limitations under the combined application of salinity and waterlogging stress -- 4.4 Molecular changes under combined application of salinity and waterlogging stress -- 4.5 Adaptive mechanism against combine-existence of salinity and waterlogging stress -- 4.6 Conclusion -- References -- 5 Drought stress in sorghum: impact on grain quality -- 5.1 Introduction -- 5.2 Drought -- 5.3 Sorghum -- 5.3.1 Sorghum grain composition -- 5.3.2 Significance of sorghum grain as food and feed -- 5.4 Effect of drought stress on grain quality -- 5.4.1 Starch -- 5.4.2 Protein -- 5.4.3 Lipids -- 5.4.4 Minerals and phytate -- 5.4.5 Phenolic content -- 5.5 Current and future prospectives for improvement of grain quality -- 5.5.1 Molecular studies -- 5.5.2 QTL studies -- 5.5.3 Transcriptomics -- 5.5.4 Proteomic studies -- 5.5.5 High throughput phenotyping -- 5.6 Conclusion -- References -- 6 Drought stress tolerance in cotton: progress and perspectives -- 6.1 Introduction -- 6.2 Mechanism of drought tolerance -- 6.3 Effect of drought -- 6.4 Decrease in photosynthesis -- 6.5 Stomatal conductance and transpiration regulation of water use -- 6.6 Growth -- 6.7 Root growth -- 6.8 Root traits -- 6.9 Reproductive growth -- 6.10 Role of plant growth-promoting rhizobacteria in drought -- 6.11 Use of plant growth regulator and chemicals for drought stress alleviation -- 6.12 Drought stress signaling in cotton plant -- 6.13 Source-sink relationships -- 6.14 Lint yield -- 6.15 Fiber quality.

6.16 Genetic improvement -- 6.17 Molecular breeding approach -- 6.18 Genetic engineering for drought tolerance -- 6.19 Genome editing in cotton -- 6.20 Conclusion and future perspectives -- References -- Further reading -- 7 Root system architectural and growth responses of crop plants to mineral nutrition under moisture stress and its implicat... -- 7.1 Introduction -- 7.2 Root system and its role in drought tolerance -- 7.3 Nutrient regulation of root system architecture and its implications in drought tolerance -- 7.3.1 Nitrogen -- 7.3.2 Phosphorus -- 7.3.3 Potassium -- 7.4 Root growth and developmental responses to other nutrients and drought tolerance -- 7.4.1 Boron (B) -- 7.4.2 Iron (Fe) -- 7.4.3 Calcium (Ca) -- 7.4.4 Magnesium (Mg) -- 7.4.5 Sulfur (S) -- 7.4.6 Zinc (Zn) -- 7.4.7 Molybdenum (Mo) -- 7.4.8 Cobalt (Co) -- 7.4.9 Silicon (Si) -- 7.4.10 Selenium (Se) -- 7.5 Molecular regulation of nutrient regulated root architecture -- 7.6 Conclusion -- References -- 8 High-temperature stress in wheat under climate change scenario, effects and mitigation strategies -- 8.1 Introduction -- 8.2 Adverse effects of high temperature on wheat -- 8.2.1 Extent of wheat area affected by heat and mechanisms impacted -- 8.3 Mechanism of heat tolerance -- 8.3.1 Avoidance mechanisms by way of phenotypic adjustments -- 8.3.2 Tolerance mechanisms -- 8.4 Traits of importance for heat tolerance and their phenotyping techniques -- 8.4.1 Canopy temperature -- 8.4.2 Leaf chlorophyll content -- 8.4.3 Canopy greenness stay green canopy -- 8.4.4 Photosynthetic efficiency -- 8.4.5 Cell membrane thermal stability -- 8.5 Plant breeding strategies to mitigate high temperature in wheat -- 8.5.1 Approaches for identification of high-temperature stress tolerance genes -- 8.5.2 Plant breeding for heat tolerance in wheat -- 8.5.3 Germplasm identification for heat tolerance.

8.5.4 Heat-tolerant varieties by conventional selection -- 8.5.5 Marker-assisted selection for heat tolerance -- 8.5.6 Marker-assisted recurrent selection for improving high-temperature tolerance -- 8.5.7 Genomics-assisted breeding -- References -- 9 Relevance of ear and ear-related traits in wheat under heat stress -- 9.1 Introduction -- 9.2 Present situation of wheat in India -- 9.3 Effects of heat stress on wheat -- 9.3.1 Vegetative growth -- 9.3.2 Reproductive growth -- 9.3.3 Grain filling and grain quality -- 9.4 Importance of ear to the wheat plant and its contribution to the photosynthesis -- 9.4.1 Contribution of ear to the yield in wheat -- 9.4.2 Contribution of awns to the yield in wheat -- 9.5 Some important ear-related physiological traits that can contribute for yield stability and thermotolerance in wheat -- 9.5.1 Epicuticular wax -- 9.5.2 Chlorophylls -- 9.5.3 Efficiency of photosystem II (chlorophyll fluorescence) -- 9.5.4 Carotenoids -- 9.5.5 Anthocyanins -- 9.5.6 Stomatal density -- 9.5.7 Ear temperature depression (thermal imaging) -- 9.5.8 Grain growth rate and grain moisture content -- 9.5.9 Vasculature of peduncle at the ear base -- 9.6 Conclusions -- 9.7 Future perspectives -- Acknowledgments -- Compliance with ethical standards -- Conflict of interest -- References -- 10 Air pollution mitigation and global dimming: a challenge to agriculture under changing climate -- 10.1 Introduction -- 10.2 Ecological impact of pollution -- 10.3 Air pollution -- 10.4 Types of air pollution -- 10.4.1 Particulate matter -- 10.4.2 Gaseous pollutants -- 10.4.2.1 Sulfur oxides -- 10.4.2.2 Nitrogen oxides -- 10.4.3 Other pollutants -- 10.4.3.1 CO, O3, and heavy metals -- 10.5 Effect of air pollution on agriculture -- 10.6 Ecological impact of air pollution -- 10.7 Global dimming -- 10.7.1 Possible and probable causes for global dimming.

10.7.1.1 Water vapor -- 10.7.1.2 Cloud transmissivity -- 10.7.1.3 Aerosols -- 10.7.2 Possible consequences of global dimming on agriculture -- 10.7.3 Global dimming effects on the hydrological cycle -- 10.7.4 Lower irradiance affecting the carbon cycle -- 10.8 Global and national scenario of SO2 pollution -- 10.9 Impact of sulfur dioxide (SO2) pollutant on physiological and biochemical characteristics of crop plants -- 10.9.1 Plant uptake of sulfur dioxide -- 10.9.2 Effect on morphology and growth of plants -- 10.9.3 Effect on leaf and gas exchange attributes -- 10.9.4 Other physiological effects -- 10.9.5 Production of reactive oxygen species -- 10.9.6 Effect on ascorbic acid, an important antioxidant -- 10.10 Enzymatic responses of plant species to air pollution -- 10.11 SO2 and NO2 as sources of S and N nutrition -- 10.12 Conclusion and future perspective -- References -- 11 Insights into the physiological and biochemical responses to abiotic stress during seed development -- 11.1 Introduction -- 11.2 Process of seed development -- 11.2.1 Female gametophyte (egg) -- 11.2.2 Male gametophyte (pollen) -- 11.3 Effect of abiotic stress on gametogenesis -- 11.3.1 Effect of abiotic stress on female gametogenesis -- 11.3.2 Effect of abiotic stress on male gametogenesis -- 11.4 Effect of stress on pollination and fertilization -- 11.4.1 Pollen dispersal/anther dehiscence -- 11.4.2 Pollen germination and fertilization -- 11.5 Effect of stress on seed development and maturation -- 11.6 Physiological and biochemical effects of abiotic stress on seed quality characteristics -- 11.6.1 Seed size -- 11.6.2 Seed composition -- 11.6.3 Seed desiccation and storability -- 11.6.4 Seed vigor -- 11.6.5 Seed germination and dormancy -- 11.7 Transgenerational effect of abiotic stress during seed development -- 11.8 Conclusion -- References.
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 600526-1001 XX(600526.1)
Arıyor...

On Order