
Başlık:
Microbial management of plant stresses : current trends, application and challenges
Yazar:
Kumar, Ajay, PhD.
ISBN:
9780323859202
Yayın Bilgileri:
Duxford : Woodhead Publishing, 2021.
Fiziksel Tanımlama:
1 online resource
İçerik:
Intro -- Microbial Management of Plant Stresses: Current Trends, Application and Challenges -- Copyright -- Contents -- Contributors -- Chapter 1: Facultative fungal endophytes and their potential for the development of sustainable agriculture -- 1.1. Introduction -- 1.2. Endophytic fungi -- 1.2.1. Facultative endophytic fungi and their life inside the plant -- 1.2.2. Facultative endophytic fungi and their life outside the plant -- 1.3. Potential use of facultative endophytic fungi -- 1.3.1. Insect pest control -- 1.3.2. Antagonistic action against plant pathogens -- 1.3.3. Plant growth-promoting action -- 1.4. Potential commercial development of facultative endophytic fungi -- References -- Chapter 2: Physiological and molecular mechanisms in improving salinity stress tolerance by beneficial microorganisms in ... -- 2.1. Introduction -- 2.1.1. Salinity -- 2.1.2. Effect of salinity on plants -- 2.2. Beneficial microorganisms in salinity stress -- 2.2.1. Archaea -- 2.2.2. Bacteria -- 2.2.3. Fungi -- 2.3. Mechanisms of salinity tolerance in beneficial microorganisms -- 2.3.1. Osmotic adjustment and ion homeostasis -- 2.3.2. Accumulation of osmoprotectant -- 2.3.3. Nutrient uptake -- 2.3.4. Defense system against reactive oxygen species (ROS) -- 2.3.5. Extracellular compounds for improving salinity tolerance -- 2.3.6. Role of microorganisms in the modification of phytohormonal activity -- 2.3.7. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase synthesis -- 2.3.8. Gene expression and transcription factors under salinity -- 2.4. Future perspectives and conclusion -- References -- Chapter 3: The paradoxical role of sulfur bacteria on the thermodynamic maintenance of aquatic ecosystems -- 3.1. Introduction -- 3.2. Sulfur bacteria -- 3.3. Photosynthetic anoxygenic bacteria -- 3.4. Dissimilatory sulfate-reducing bacteria.
3.5. Bioenergetic processes involved -- 3.6. Remarks on water column metabolism and the role of bacteria -- References -- Chapter 4: Bacterial alleviation of drought stress in plants: Potential mechanisms and challenges -- 4.1. Introduction -- 4.1.1. Drought-induced adverse effects on plants -- 4.1.2. PGPR and drought -- 4.2. PGPR mechanisms enhancing drought stress tolerance in plants -- 4.2.1. Improving root morphology -- 4.2.2. Modulation of plant phytohormones -- 4.2.2.1. Ethylene -- 4.2.2.2. IAA -- 4.2.2.3. ABA -- 4.2.2.4. Gibberellins -- 4.2.3. Role of volatile organic compounds -- 4.2.4. Exopolysaccharide production -- 4.2.5. Alteration of antioxidant defense system -- 4.2.6. Contribution to osmolyte homeostasis in plants -- 4.3. Conclusions -- References -- Chapter 5: A nano-agro formulation strategy: Combatting plant stresses via linking agri sustainability and environmental ... -- 5.1. Introduction -- 5.1.1. The onset of the consumption and production pattern of pesticides in India -- 5.1.2. The conventional tool of farming: A farming system well-equipped in the use of chemical inputs -- 5.1.3. Advantages of conventional farming -- 5.1.3.1. Achieving higher gains with lower costs -- 5.1.3.2. Open access to more job opportunities -- 5.1.3.3. Improving food security -- 5.1.3.4. Lower cost of produce -- 5.1.4. Disadvantages of conventional farming -- 5.1.4.1. Contamination of water sources -- 5.1.4.2. Decreased quality of water -- 5.1.4.3. Reduction in crop productivity -- 5.1.4.4. Increase in biological oxygen demand -- 5.1.4.5. Exacerbation of ecosystem degradation -- 5.1.4.6. Intensive damage to carbon profile of soil -- 5.1.5. Nanotechnology: A research branch connecting various fields -- 5.1.6. Nano-farming: A growing edge in agriculture -- 5.1.7. Nano-fertilizers: A transitional zone highlighting a modern era.
5.1.8. Various modes in which nanotechnology may become applicable -- 5.1.8.1. Principle of early technique -- 5.1.8.2. Disadvantages of early technique -- 5.1.8.3. Requirements for plants grown in selective liquid nutrient solutions (without soil) -- 5.1.8.4. Liquid fertilizers sprayed onto leaves -- 5.1.9. Recent developments in agricultural nanotechnology -- 5.1.10. Advantages of nano-agri integration -- 5.1.10.1. Nanosystems for providing sustainable management -- 5.1.10.2. Nanosystems to rejuvenate soil heath -- 5.1.11. Public acceptance of nanotechnology: Risky or beneficial? -- 5.2. Conclusion -- References -- Chapter 6: The new green revolution and rhizobacterial volatile organic compounds: Recent progress and future prospects -- 6.1. Introduction -- 6.2. Rhizobacterial volatiles: Activity and form -- 6.3. Plant fitness management through rhizobacterial volatiles -- 6.4. Rhizobacterial volatiles and their direct and indirect repercussions on plant growth and development -- 6.5. Challenges associated with the application of rhizobacterial volatiles -- 6.6. Conclusion and future prospects -- References -- Chapter 7: Molecular mechanism and signaling pathways interplay between plant hormones during plant-microbe crosstalk -- 7.1. Introduction -- 7.2. Functions of plant hormones -- 7.2.1. Auxins -- 7.2.2. Cytokinin (CK) -- 7.2.3. Jasmonic acid (JA) -- 7.2.4. Salicylic acid (SA) -- 7.2.5. Gibberellins (GA) and abscisic acid (ABA) -- 7.3. Plant-microbe interactions -- 7.3.1. Synergistic interactions -- 7.3.2. Antagonistic interactions -- 7.4. Phytohormone-synthesizing microbes -- 7.5. Microbial Phytohormones and their role in plants -- 7.5.1. Plant growth-promoting effect on crops -- 7.5.2. Role in plant stress tolerance -- 7.6. Hormone signaling in microbe-host interactions -- 7.7. Concluding remarks and future perspectives -- References.
Chapter 8: Omics and approaches in plant stress management -- 8.1. Introduction -- 8.2. Bioinformatics tools and their applications -- 8.2.1. Sequence analysis and similarity searching tools -- 8.3. Genome-sequencing-based approaches -- 8.3.1. Whole-genome sequencing methods -- 8.3.2. Clone-by-clone -- 8.3.3. Whole-genome shotgun -- 8.3.4. Computational proteomics approaches -- 8.3.5. Metabolomics-based approach -- 8.3.6. Genome annotation -- 8.4. Bioinformatics role in crop improvement -- 8.4.1. Gene discovery -- 8.4.2. Comparative genetics -- 8.4.3. Cheminformatics -- 8.4.4. Agricultural genomics -- 8.4.5. Microarray technology -- 8.5. Bioinformatics resources for plant stress -- 8.5.1. Plant environmental stress transcript database -- 8.5.2. STIFDB (stress-responsive transcription factor database) -- 8.5.3. Plant stress gene database -- 8.5.4. QlicRice: A web interface for abiotic stress-responsive QTL and loci interaction channel in rice -- 8.5.5. PASmiR: A database for miRNA molecular regulation in plant abiotic stress -- 8.5.6. The Arabidopsis information resource (TAIR) -- 8.5.7. Drought stress gene database (DroughtDB) -- 8.5.8. PSPDB: Plant stress protein database -- 8.5.9. Plant proteome response to stress (PlantPReS) -- 8.6. Functional genomics and bioinformatics approach to elucidate abiotic stress tolerance mechanism -- 8.6.1. Gene discovery -- 8.6.2. Stress response gene detection by transcript profiling -- 8.6.3. Functional features of pathways for stress tolerance found by transgenic approach -- 8.6.4. Genomics-assisted breeding approach -- 8.6.5. Improvement of yield quality in crops affected by abiotic stress -- References -- Chapter 9: Root-endophytes and their contribution to plant abiotic stress tolerance -- 9.1. Introduction -- 9.2. Diversity of root-endophytes in agriculturally important crops.
9.2.1. Transmission of endophytes -- 9.2.2. Vertical transmission -- 9.2.3. Horizontal transmission -- 9.3. Plant-endophyte interactions under abiotic stress -- 9.4. Root endophyte-mediated plant-growth promotion and abiotic stress tolerance -- 9.4.1. Salinity -- 9.4.2. Drought -- 9.4.3. Nutrient deficiency -- 9.4.4. Heavy metal -- 9.4.5. Low/High temperature -- 9.5. Recent trends and advancements in root-endophyte application in agricultural systems -- 9.6. Scope of root-endophytes in climate-smart agriculture and sustainability of modern agricultural ecosystems -- 9.7. Future prospectus -- References -- Chapter 10: Deciphering fungal endophytes combating abiotic stresses in crop plants (cereals and vegetables) -- 10.1. Introduction -- 10.2. Fungal symbiotic relationship: A knot for better living -- 10.2.1. Symbiosis -- 10.2.2. Habitat adapted symbiosis -- 10.2.3. Tripartite symbiosis -- 10.3. Fungal symbionts: ``A synergistic collaboratorþþ -- 10.3.1. Endophytes -- 10.4. Fungal endophytes and their types -- 10.4.1. Fungal endophytes -- 10.4.2. Types of fungal endophytes -- 10.5. Fungal endophyte colonization into plant (host-endophyte synchrony) -- 10.5.1. Recognition of host -- 10.5.2. Spore germination -- 10.5.3. Penetration into host tissue -- 10.5.4. Colonization of endophytes -- 10.5.5. Fungal endophytes combating abiotic stress -- 10.6. Abiotic stress -- 10.6.1. Drought stress mitigation -- 10.6.2. Role of plants in drought tolerance -- 10.6.3. Role of plant-fungal interaction in drought tolerance -- 10.6.4. Salinity stress mitigation -- 10.6.5. Role of plants in salt tolerance -- 10.6.6. Role of plant-fungal interaction in salt tolerance -- 10.6.7. Approach of genetic engineering employed to overcome plant salinity -- 10.6.8. Extreme temperature (heat and cold) stress mitigation -- 10.6.8.1. Heat stress and plants.
Elektronik Erişim:
ScienceDirect https://www.sciencedirect.com/science/book/9780323851930Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 600636-1001 | XX(600636.1) | Arıyor... | Arıyor... |
