
Başlık:
Multifunctional nanocarriers
Yazar:
Mehra, Neelesh Kumar, editor.
ISBN:
9780323852944
Fiziksel Tanımlama:
1 online resource.
Seri:
Micro and nano technologies
Micro & nano technologies.
İçerik:
Front Cover -- MULTIFUNCTIONAL NANOCARRIERS -- MULTIFUNCTIONAL NANOCARRIERS -- Copyright -- Contents -- Contributors -- Editors -- Preface -- 1 -- Nanotechnology: advanced drug-targeting concepts, fundamentals, and strategies -- 1. Introduction -- 2. Approaches for drug targeting -- 2.1 Passive targeting -- 2.2 Active targeting -- 2.2.1 First-order targeting (organ level) -- 2.2.1.1 Drug delivery to the brain -- 2.2.1.2 Drug delivery to lungs -- 2.2.1.2.1 Approaches for pulmonary targeting -- 2.2.1.3 Drug delivery to liver -- 2.2.1.3.1 Approaches for liver targeting -- 2.2.1.3.1.1 Carbohydrate (glycoprotein) receptor-mediated delivery -- 2.2.1.3.1.2 Asialoglycoprotein receptor-mediated delivery -- 2.2.1.3.1.3 Galactose/fucose-specific receptor-mediated delivery -- 2.2.1.3.1.4 Mannose/N-acetylglucosamine receptor-mediated delivery -- 2.2.1.3.1.5 Scavenger receptor-mediated delivery -- 2.2.1.3.1.6 Complement or Fc receptor-mediated delivery -- 2.2.1.3.1.7 LDL receptor-mediated delivery -- 2.2.2 Second-order targeting (cellular targeting) -- 2.2.2.1 Monoclonal antibodies/antibody fragments -- 2.2.2.2 Aptamers -- 2.2.2.3 Peptides -- 2.2.2.4 Folates (RKT) -- 2.2.2.5 Lectins -- 2.2.2.6 Transferrin -- 2.2.2.7 Mannose derivatives -- 2.2.2.7.1 ADEPT (antigen directed enzyme-linked prodrug therapy) -- 2.2.3 Third-order targeting (subcellular/intracellular targeting) -- 2.2.3.1 Endocytosis-based drug delivery -- 2.3 Inverse targeting -- 2.4 Dual targeting -- 2.5 Double targeting -- 2.6 Prodrug approach -- 2.6.1 ADEPT (antibody directed enzyme-linked prodrug therapy) -- 2.6.2 VDEPT (viral directed enzyme-linked prodrug therapy) -- 2.6.3 GDEPT (gene directed enzyme-linked prodrug therapy) -- 3. Fundamental strategies for drug delivery systems -- 3.1 Organic nanocarriers -- 3.1.1 Vesicular carriers -- 3.1.2 Polymeric nanoparticles -- 3.1.3 Lipid nanoparticles.
3.1.4 Polymeric micelles -- 3.1.5 Dendrimers -- 3.1.6 Viral nanoparticles -- 3.2 Inorganic nanoparticles -- 3.3 Hybrid nanoparticles -- 3.4 Stimuli-responsive target strategies -- 3.4.1 pH-sensitive drug delivery systems -- 3.4.2 Temperature-sensitive drug delivery system -- 3.4.3 Redox-sensitive drug delivery systems -- 3.4.4 Magnetic sensitive drug delivery system -- 3.4.5 Ultrasound-sensitive drug delivery systems -- 3.4.6 Photosensitive drug delivery systems -- 4. Conclusion and future perspectives -- Acknowledgment -- References -- 1 -- Multifunctional nanocarriers -- 2 -- Recent advances in dendrimer-based nanocarriers -- 1. Introduction -- 2. Advantages of dendrimers -- 3. Types of dendrimers -- 3.1 PAMAM dendrimers -- 3.2 PPI dendrimers -- 3.3 PLL dendrimers -- 3.4 Phosphorus dendrimers -- 3.5 Carbosilane dendrimers -- 3.6 Hybrid nanocarriers -- 3.7 Other types of dendrimers -- 4. Applications of dendrimers -- 4.1 Gene delivery -- 4.2 Therapeutic applications -- 4.2.1 Anticancer drugs -- 4.2.2 Antimicrobial agents -- 4.2.3 Antiinflammatory disorders -- 4.3 Diagnostic applications -- 5. Challenges -- 6. Conclusion -- Acknowledgments and conflict of interest -- References -- 3 -- Carbon nanomaterials in controlled and targeted drug delivery -- 1. Introduction -- 1.1 Types of carbon nanomaterials/carbon-based nanomaterials or allotropes -- 1.2 Graphite -- 1.3 Nanodiamonds -- 1.4 Graphene -- 2. Synthesis of carbon nanomaterials -- 2.1 Synthesis of carbon nanotubes by laser vaporization method -- 2.2 Synthesis of graphene -- 3. Top-down techniques -- 3.1 Liquid-phase exfoliation -- 3.2 Electrochemical exfoliation -- 3.3 Chemical reduction of graphene oxide -- 4. Bottom-up techniques -- 4.1 Epitaxial method -- 4.2 CVD synthesis -- 4.3 Chemical synthesis from aromatic molecules -- 4.4 Synthesis of carbon nanohorns -- 4.5 Laser ablation method.
4.6 Arc method -- 5. Carbon nanomaterials for drug delivery -- 6. GN for drug delivery -- 6.1 GN-based inorganic nanohybrids for drug delivery -- 7. CNTs for drug delivery -- 7.1 CNTs as carriers of anticancer molecules -- 7.2 CNT based conjugated systems for cancer targeting -- 8. Graphene for cancer targeting -- 9. Toxic effects of carbon-based nanomaterials -- 10. Applications -- 10.1 Graphene -- 10.2 Solid-phase extraction with graphene -- 10.3 Solid-phase microextraction with graphene -- 10.4 Graphene in other sample preparation techniques -- 10.5 Carbon nanotubes -- 10.5.1 Gas sensors -- 10.6 Voltammetry -- 10.7 Biosensors -- 10.8 Chromatographic properties -- 11. Conclusion -- Abbreviations -- Acknowledgments -- References -- 4 -- Liposomal formulation: opportunities, challenges, and industrial applicability -- 1. Introduction -- 2. Types of liposomes -- 2.1 Conventional liposomes -- 2.2 Stealth liposomes -- 2.3 Immunoliposomes -- 2.4 Thermosensitive liposomes -- 2.5 pH sensitive liposomes -- 2.6 Light-induced liposomes -- 2.7 Enzyme-responsive liposomes -- 3. Methods of preparation -- 3.1 Thin-film hydration method -- 3.2 Reverse-phase evaporation method -- 3.3 Modified hydration method -- 3.4 Ethanol injection method -- 3.5 Freeze-thaw extrusion method -- 3.6 Microfluidic-based method -- 3.7 Supercritical fluid method -- 4. Targeted delivery -- 4.1 Passive targeting -- 4.2 Active targeting (surface tuning) -- 5. Challenges facing liposomal drug-delivery systems -- 5.1 Challenges in drug loading -- 5.1.1 Passive loading -- 5.1.2 Active loading -- 5.2 Challenges in scale-up and regulation -- 5.3 Market and biological challenges -- 6. Marketed and clinical liposomes -- 7. Conclusion and future perspectives -- References -- 5 -- Polymers-drug-conjugates strategies in drug delivery -- 1. Introduction -- 2. Polymer -- 3. Types of polymer.
3.1 Biodegradable polymers -- 3.2 Natural biodegradable polymers -- 3.2.1 Polysaccharides -- 3.2.1.1 Chitosan -- 3.2.1.2 Glycol chitosan -- 3.2.1.3 Hyaluronic acid (HA) -- 3.2.2 Proteins and polypeptides -- 3.2.2.1 Collagen -- 3.2.2.2 Albumin -- 3.2.2.3 Gelatin -- 3.2.2.4 Elastin -- 3.3 Synthetic biodegradable polymers -- 3.3.1 Poly (glycolic acid) (PGA) -- 3.3.2 Poly (lactic acid-co-glycolic acid) (PLGA) -- 3.3.3 N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers -- 3.3.4 Polycaprolactone (PCL) -- 3.3.5 Polyanhydride -- 3.3.6 Poly (trimethyl carbonates) polycarbonates -- 4. Different strategies to conjugate polymers -- 4.1 Polymer-drug molecule conjugate -- 4.2 Polymer-protein conjugate -- 4.3 Dendrimer -- 5. Conclusions -- References -- 6 -- Metallic nanoparticles in drug delivery: concepts, challenges, and current advancement -- 1. Introduction -- 2. Metallic nanoparticles and their general method of synthesis -- 2.1 Top-down method -- 2.1.1 Mechanical methods -- 2.1.2 Vapor methods -- 2.2 Bottom-up approach -- 2.2.1 Solid-state method -- 2.2.2 Liquid state synthesis method [11,14] -- 3. Fundamentals of metallic nanoparticles -- 3.1 Gold nanoparticles -- 3.2 Silver nanoparticles -- 3.3 Iron nanoparticles -- 3.4 Palladium nanoparticles -- 3.5 Platinum nanoparticles -- 3.6 Copper nanoparticles -- 3.7 Zinc nanoparticles -- 3.8 Bimetallic nanoparticles -- 3.9 Characterization of metallic nanoparticles -- 4. Biomedical applications of metallic nanoparticles -- 4.1 Metallic nanoparticles for cancer therapy -- 4.2 Metallic nanoparticles for infectious disease treatment -- 4.3 Strategies for crossing the blood-brain barrier using metallic nanoparticles -- 4.4 Metallic nanoparticles for drug delivery to the skin -- 4.5 Metallic nanoparticles for drug delivery to eyes -- 4.6 Metallic nanoparticles for treatment of rheumatoid arthritis.
4.7 Metallic nanoparticles for diabetes management -- 5. Challenges and perspectives -- 6. Conclusion -- References -- 7 -- Needle-free technology for biomedical applications -- 1. Introduction -- 2. Components of a needle-free injection devices -- 2.1 Nozzle -- 2.2 Drug reservoir -- 2.3 Pressure source -- 3. Fluid dynamics behind the formation of jet and penetration into the skin -- 3.1 Spring system -- 3.2 Laser powered -- 3.3 Energy propelled system -- 3.3.1 Lorentz force -- 3.3.2 Gas or air propelled -- 3.4 Shock waves -- 4. Type of material to be delivered -- 4.1 Liquid -- 4.2 Powder -- 4.3 Depot -- 4.4 Based on the mechanism of drug delivery -- 4.4.1 Nanopatches -- 4.4.2 Sandpaper facilitated drug delivery -- 4.4.3 Iontophoresis -- 4.4.4 Microneedle -- 4.5 Based on delivery site -- 4.5.1 Intradermal -- 4.5.2 Intramuscular -- 4.5.3 Subcutaneous -- 5. Risks and challenges -- 5.1 Infections -- 5.2 Pain management -- 6. Emerging parameters -- 6.1 Driving pressure -- 6.2 Contact pressure -- 6.3 Volume per spurt -- 6.4 Orifice diameter -- 6.5 Spacer -- 6.6 Vaccine and immunization -- 6.7 Insulin -- 7. Growth hormones -- 8. Gene therapy -- 9. Local anesthesia -- 10. Intralesional 5-ALA -- 11. Dermal applications -- 11.1 Skin rejuvenation -- 11.2 Direct palmar BoNT-ONA -- 11.3 Intralesional corticosteroids -- 11.4 Intralesional bleomycin -- 11.4.1 Miscellaneous applications -- 12. Conclusion -- References -- 8 -- Nanoparticles: opportunities, biopharmaceuticals aspects, and applications -- 1. Introduction -- 2. Biopharmaceutical aspects -- 2.1 In vitro changes in a drug with a nanosystem -- 2.1.1 Particle size distribution -- 2.1.2 Solubility -- 2.1.3 Drug release -- 2.1.4 Stability -- 2.1.5 Particle shape -- 2.2 In vivo changes in a drug with a nanosystem -- 2.2.1 Absorption -- 2.2.2 Biodistribution -- 2.2.3 Clearance -- 3. Nanoparticle opportunities.
Elektronik Erişim:
ScienceDirect https://www.sciencedirect.com/science/book/9780323850414Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 600872-1001 | XX(600872.1) | Arıyor... | Arıyor... |
