Skip to:Content
|
Bottom
Biological data integration : computer and statistical approaches için kapak resmi
Başlık:
Biological data integration : computer and statistical approaches
Yazar:
Froidevaux, Christine, editor.
ISBN:
9781394257317
Fiziksel Tanımlama:
1 online resource (288 pages)
Seri:
Computer science. Bioinformatics
İçerik:
Preface xi Christine FROIDEVAUX, Marie-Laure MARTIN-MAGNIETTE and Guillem RIGAILL -- Part 1 Knowledge Integration -- Chapter 1 Clinical Data Warehouses 3 Maxime WACK and Bastien RANCE -- 1.1 Introduction to clinical information systems and biomedical warehousing: data warehouses for what purposes? -- 1.1.1 Warehouse history -- 1.1.2 Using data warehouses today -- 1.2 Challenge: widely scattered data -- 1.3 Data warehouses and clinical data -- 1.3.1 Warehouse structures -- 1.3.2 Warehouse construction and supply -- 1.3.3 Uses -- 1.4 Warehouses and omics data: challenges -- 1.4.1 Challenges of data volumetry and structuring omic data -- 1.4.2 Attempted solutions -- 1.5 Challenges and prospects -- 1.5.1 Toward general-purpose warehouses -- 1.5.2 Ethical dimension of the implementation and the use of warehouses -- 1.5.3 Origin and reproducibility -- 1.5.4 Data quality -- 1.5.5 Data warehousing federation and data sharing -- 1.6 References -- Chapter 2 Semantic Web Methods for Data Integration in Life Sciences 25 Olivier DAMERON -- 2.1 Data-related requirements in life sciences -- 2.1.1 Databases for the life sciences -- 2.1.2 Requirements -- 2.1.3 Common approaches: InterMine and BioMart -- 2.2 Semantic Web -- 2.2.1 Techniques -- 2.2.2 Implementation -- 2.3 Perspectives -- 2.3.1 Facilitating appropriation to users -- 2.3.2 Facilitating the appropriation by software programs: FAIR data -- 2.3.3 Federated queries -- 2.4 Conclusion -- 2.5 References -- Chapter 3 Workflows for Bioinformatics Data Integration 53 Sarah COHEN-BOULAKIA and Frédéric LEMOINE -- 3.1 Introduction -- 3.2 Bioinformatics data processing chains: difficulties -- 3.2.1 Designing a data processing chain -- 3.2.2 Analysis execution and reproducibility -- 3.2.3 Maintenance, sharing and reuse -- 3.3 Solutions provided by scientific workflow systems -- 3.3.1 Fundamentals of workflow systems -- 3.3.2 Workflow systems -- 3.4 Use case: RNA-seq data analysis -- 3.4.1 Study description -- 3.4.2 From data processing chain to workflows -- 3.4.3 Data processing chains implemented as workflows: conclusion -- 3.5 Challenges, open problems and research opportunities -- 3.5.1 Formalizing workflow development -- 3.5.2 Workflow testing -- 3.5.3 Discovering and sharing workflows -- 3.6 Conclusion -- 3.7 References -- Part 2 Integration and Statistics -- Chapter 4 Variable Selection in the General Linear Model: Application to Multiomic Approaches for the Study of Seed Quality 89 Céline LÉVY-LEDUC, Marie PERROT-DOCKÈS, Gwendal CUEFF and Loïc RAJJOU -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Estimation of the covariance matrix Eq -- 4.2.2 Estimation of B -- 4.3 Numerical experiments -- 4.3.1 Statistical performance -- 4.3.2 Numerical performance -- 4.4 Application to the study of seed quality -- 4.4.1 Metabolomics data -- 4.4.2 Proteomics data -- 4.5 Conclusion -- 4.6 Appendices -- 4.6.1 Example of using the package MultiVarSel for metabolomic data analysis -- 4.6.2 Example of using the package MultiVarSel for proteomic data analysis -- 4.7 Acknowledgments -- 4.8 References -- Chapter 5 Structured Compression of Genetic Information and Genome-Wide Association Study by Additive Models 117 Florent GUINOT, Marie SZAFRANSKI and Christophe AMBROISE -- 5.1 Genome-wide association studies -- 5.1.1 Introduction to genetic mapping and linkage analysis -- 5.1.2 Principles of genome-wide association studies -- 5.1.3 Single nucleotide polymorphism -- 5.1.4 Disease penetrance and odds ratio -- 5.1.5 Single marker analysis -- 5.1.6 Multi-marker analysis -- 5.2 Structured compression and association study -- 5.2.1 Context -- 5.2.2 New structured compression approach -- 5.3 Application to ankylosing spondylitis (AS) -- 5.3.1 Data -- 5.3.2 Predictive power evaluation -- 5.3.3 Manhattan diagram -- 5.3.4 Estimation for the most significant SNP aggregates -- 5.4 Conclusion -- 5.5 References -- Chapter 6 Kernels for Omics 151 Jérôme MARIETTE and Nathalie VIALANEIX -- 6.1 Introduction -- 6.2 Relational data -- 6.2.1 Data described by the kernel -- 6.2.2 Data described by a general (dis)similarity measure -- 6.3 Exploratory analysis for relational data -- 6.3.1 Kernel clustering -- 6.3.2 Kernel principal component analysis -- 6.3.3 Kernel self-organizing maps -- 6.3.4 Limitations of relational methods -- 6.4 Combining relational data -- 6.4.1 Data integration in systems biology -- 6.4.2 Kernel approaches in data integration -- 6.4.3 A consensual kernel -- 6.4.4 A parsimonious kernel that preserves the topology of the initial data -- 6.4.5 A complete kernel preserving the topology of the initial data -- 6.5 Application -- 6.5.1 Loading Tara Ocean data -- 6.5.2 Data integration by kernel approaches -- 6.5.3 Exploratory analysis: kernel PCA -- 6.6 Session information for the results of the example -- 6.7 References -- Chapter 7 Multivariate Models for Data Integration and Biomarker Selection in 'Omics Data 195 Sébastien DÉJEAN and Kim-Anh LÊ CAO -- 7.1 Introduction -- 7.2 Background -- 7.2.1 Mathematical notations -- 7.2.2 Terminology -- 7.2.3 Multivariate projection-based approaches -- 7.2.4 A criterion to maximize specific to each methodology -- 7.2.5 A linear combination of variables to reduce the dimension of the data -- 7.2.6 Identifying a subset of relevant molecular features -- 7.2.7 Summary -- 7.3 From the biological question to the statistical analysis -- 7.3.1 Exploration of one dataset: PCA -- 7.3.2 Classify samples: projection to latent structure discriminant analysis -- 7.3.3 Integration of two datasets: projection to latent structure and related methods -- 7.3.4 Integration of several datasets: multi-block approaches -- 7.4 Graphical outputs -- 7.4.1 Individual plots -- 7.4.2 Variable plots -- 7.5 Overall summary -- 7.6 Liver toxicity study -- 7.6.1 The datasets -- 7.6.2 Biological questions and statistical methods -- 7.6.3 Single dataset analysis -- 7.6.4 Integrative analysis -- 7.7 Conclusion -- 7.8 Acknowledgments -- 7.9 Appendix: reproducible R code -- 7.9.1 Toy examples -- 7.9.2 Liver toxicity -- 7.10 References -- List of Authors -- Index.
Özet:
The study of biological data is constantly undergoing profound changes. Firstly, the volume of data available has increased considerably due to new high throughput techniques used for experiments. Secondly, the remarkable progress in both computational and statistical analysis methods and infrastructures has made it possible to process these voluminous data. The resulting challenge concerns our ability to integrate these data, i.e. to use their complementary nature effectively in the hope of advancing our knowledge. Therefore, a major challenge in studying biology today is integrating data for the most exhaustive analysis possible. Biological Data Integration deals in a pedagogical way with research work in biological data science, examining both computational approaches to data integration and statistical approaches to the integration of omics data.
Notlar:
John Wiley and Sons
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 598860-1001 QH324.2
Arıyor...

On Order

Go to:Top of Page