
Başlık:
Slow-wave microwave and mm-wave passive circuits
Yazar:
Ferrari, Philippe, editor.
ISBN:
9781119820192
9781119820185
9781119820178
Fiziksel Tanımlama:
1 online resource (xii, 196 pages) : illustrations (chiefly color)
Genel Not:
Includes index.
İçerik:
List of Contributors vii -- Preface ix -- Acronyms xi -- 1 Background Theory and Concepts 1 Philippe Ferrari, Marc Margalef-Rovira, and Gustavo P. Rehder -- 1.1 Historical Background 1 -- 1.2 The Slow-Wave Concept 3 -- 1.3 Modern Slow-Wave Transmission Lines Brief Description 7 -- 1.3.1 Slow-Wave Coplanar Waveguide 7 -- 1.3.2 Slow-Wave Microstrip (S-MS) 8 -- 1.3.3 Slow-Wave Substrate Integrated Waveguide (SW-SIW) 8 -- 1.4 Motivations for the Development of Modern Slow-Wave Transmission Lines 9 -- 1.4.1 Improvement of Transmission Lines Performance in Integrated Technologies 10 -- 1.4.2 Reduction of the Transmission Lines and SIWs Length 16 -- 1.4.3 Addition of New Degrees of Freedom in the Development of Coupled-Lines and 3D Transmission Lines 16 -- References 17 -- 2 Slow-Wave Coplanar Waveguides and Slow-Wave Coplanar Striplines 21 Anne-Laure Franc, Leonardo Gomes, Marc Margalef-Rovira, and Abdelhalim Saadi -- 2.1 Introduction – Chapter Organization 21 -- 2.2 Principle of Slow-Wave CPW and Slow-Wave CPS 22 -- 2.2.1 Slow-Wave Coplanar Waveguides Topology 22 -- 2.2.2 Slow-Wave Coplanar Striplines Topology 24 -- 2.2.3 Figures of Merit 24 -- 2.3 Slow-Wave Coplanar Waveguides 25 -- 2.3.1 Electrical Performance 25 -- 2.3.1.1 CPW Strips Dimensions 26 -- 2.3.1.2 Shield Dimensions 28 -- 2.3.1.3 Metal Strips’ Thickness 29 -- 2.3.2 Electrical Model 30 -- 2.3.2.1 Model Components 31 -- 2.3.2.2 Model Component Calculations 33 -- 2.3.2.3 Losses Distribution 35 -- 2.3.2.4 Dispersion: Floating Shield Equivalent Inductance 37 -- 2.3.3 Benchmark With Conventional Transmission Lines 38 -- 2.3.3.1 Comparison of Electrical Performance 38 -- 2.3.3.2 Trade-off Between Surface Area and Electrical Performance 40 -- 2.4 Slow-Wave Coplanar Striplines 41 -- 2.4.1 Electrical Performance 41 -- 2.4.2 Electrical Model 43 -- 2.4.3 Design 44 -- 2.4.3.1 Design Rules 44 -- 2.4.3.2 Design Flexibility 45 -- 2.5 Coupled Slow-Wave Coplanar Waveguides 45 -- 2.5.1 Topology 45 -- 2.5.1.1 Design Flexibility 45 -- 2.5.2 Electric and Magnetic Fields Distribution 47 -- 2.5.3 Propagation Modes in Coupled Slow-Wave CPWs 47 -- 2.5.4 Definition of the Electric Model Topology: RLRC Model for Coupled Lines 48 -- 2.5.4.1 Magnetic Coupling 49 -- 2.5.4.2 Electric Coupling 50 -- 2.5.4.3 Lossy Model of a Coupled Slow-Wave CPW 52 -- 2.5.5 Design Charts 52 -- 2.6 Circuits Using Slow-Wave CPW and Slow-Wave CPS 54 -- 2.6.1 Junctions 55 -- 2.6.1.1 Microstrip to Slow-Wave CPW Junction 55 -- 2.6.1.2 Tee-Junctions 56 -- 2.6.2 Millimeter-Wave Filters 57 -- 2.6.2.1 Dual Behavior Resonator 57 -- 2.6.2.2 Coupled Lines Filters 59 -- 2.6.2.3 LC Quasi-Lumped Resonator 61 -- 2.6.3 Power Divider/Combiner 65 -- 2.6.3.1 Wilkinson Topology 65 -- 2.6.3.2 Variation Based on Wilkinson Topology 66 -- 2.6.4 Couplers & Baluns 69 -- 2.6.4.1 Branch-Line Couplers 69 -- 2.6.4.2 Coupled Line Couplers 69 -- 2.6.4.3 Rat-Race Balun 71 -- 2.6.4.4 Power-Divider-Based Balun 73 -- 2.6.5 Voltage-Controlled Oscillator tank 73 -- 2.6.5.1 Slow-Wave CPS as Inductor Voltage-Controlled Oscillator 74 -- 2.6.5.2 Slow-wave CPS resonator standing wave Voltage-Controlled Oscillator 77 -- 2.6.5.3 Conclusion 79 -- 2.6.6 Phase Shifter 80 -- 2.6.6.1 Integrated Phase Shifter With Varactors 81 -- 2.6.6.2 Compact Liquid Crystal MEMS Phase Shifter 82 -- 2.6.7 Sensors 85 -- 2.7 Conclusion 86 -- References 86 -- 3 Slow-Wave Microstrip Lines 91 Hamza Issa and Ariana Lacorte Caniato Serrano -- 3.1 Introduction 91 -- 3.2 Principle of Slow-Wave Microstrip Lines 92 -- 3.3 PCB Technology 94 -- 3.3.1 Slow-Wave Microstrip Line 94 -- 3.3.2 Slow-Wave Coupled Lines 95 -- 3.4 Metallic Nanowire Membrane Technology 95 -- 3.5 Electrical Model 98 -- 3.5.1 Linear Capacitance C SMS 99 -- 3.5.2 Linear Inductance L SMS 103 -- 3.5.2.1 PCB Technology 103 -- 3.5.2.2 MnM Technology 104 -- 3.5.3 Linear Strip Resistance R 105 -- 3.5.4 Linear Conductance G 105 -- 3.5.5 Metallic via Inductance L via and Mutual M ij 105 -- 3.5.6 Metallic vias Resistance R via 107 -- 3.5.7 Electrical Model for Coupled Lines 107 -- 3.5.8 Validation 108 -- 3.5.8.1 PCB Technology 109 -- 3.5.8.2 MnM Technology 111 -- 3.5.9 Discussion 120 -- 3.6 Applications 121 -- 3.6.1 Wilkinson Power Divider 122 -- 3.6.2 Branch-Line Coupler 124 -- 3.6.3 Forward-Wave Directional Coupler 126 -- 3.6.4 MEMS Phase Shifter With Liquid Crystal 129 -- 3.7 CMOS Technology 132 -- 3.7.1 Slow-Wave Microstrip Lines (S-MS) 132 -- 3.7.2 Principle of an Artificial Transmission Line Based on Meandered S-MS Lines 135 -- 3.7.3 Artificial S-MS Line and Meandered-Microstrip Line 135 -- 3.7.3.1 Design 135 -- 3.7.3.2 Results and Comparison 136 -- 3.7.4 Branch-Line Coupler 137 -- 3.7.4.1 Design 137 -- 3.7.4.2 Results 138 -- 3.7.4.3 Influence of the Back-End-Of-Line 140 -- References 140 -- 4 Slow-Wave SIW 143 Matthieu Bertrand, Jordan Corsi, Emmanuel Pistono, and Gustavo P. Rehder -- 4.1 Substrate Integrated Waveguides 144 -- 4.2 Basic Concept of the Slow-Wave SIW 146 -- 4.3 Modeling of Slow-Wave SIW 147 -- 4.3.1 Lossless SW-PPW to Lossless SW-SIW 147 -- 4.3.2 Lossy Slow-Wave PPW (Dielectric Losses) 151 -- 4.3.3 Lossy Slow-Wave PPW (Metallic Posts Losses) 153 -- 4.4 SW-SIW in PCB Technology 157 -- 4.4.1 Design Rules 157 -- 4.4.2 Ku-Band SW-SIW Implementation and Results 158 -- 4.4.3 SW-SIW Coupler 161 -- 4.4.4 SW-SIW Cavity Filter 165 -- 4.4.5 Slow-Wave SIW Cavity-Backed Antenna 167 -- 4.5 SW-SIW in Metallic Nanowire Membrane Technology 170 -- 4.5.1 Effective Width and Cut-off Frequency 172 -- 4.5.2 Losses due to Metallic Nanowires 173 -- 4.5.3 W-Band Implementation and Results 176 -- 4.5.4 SW-SIW Cavity Filters 180 -- References 183 -- Index 187.
Özet:
"Slow-wave Microwave and mm-wave Passive Circuits presents the fundamentals and state of the art concepts, design examples, relevant components, and technology of the subject, plus examples of circuit layout optimization using slow-wave circuits. In one volume, the recent advances in aspects of the slow-wave concept are covered. Potential applications include automotive radars, medical and security applications, and 5G and future 6G for very high-speed communications. The text considers a variety of slow-wave structures and associated concepts which are useful for circuit design. Each structure is electrically modeled with clear illustration. The highly qualified authors show that the use of the slow-wave concept can, in some cases, improve the performance of passive circuits. The techniques proposed make it possible to reduce the size and/or the performance of the circuits, with a beneficial cost-saving effect on semiconductor materials. Concepts are applied to several technologies, namely CMOS, PCB (Printed Circuit Board) and nanowires."-- Provided by publisher.
Notlar:
John Wiley and Sons
Yazar Ek Girişi:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119820192Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 599229-1001 | TK454 .S583 2025 | Arıyor... | Arıyor... |
