
Başlık:
Cyclodextrins : properties and industrial applications
Yazar:
Amiri, Sahar, author.
ISBN:
9781119247548
9781119247609
9781119247524
9781119247920
Fiziksel Tanımlama:
1 online resource
İçerik:
Cover -- Title Page -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Cyclodextrins -- 1.2 Cyclodextrin Properties -- 1.2.1 Toxicity Considerations -- 1.2.2 Inclusion Complex Formation -- 1.3 Inclusion Complex Formation Mechanism -- 1.3.1 Hydrophobic Interaction -- 1.3.2 van der Waals Interaction -- 1.3.3 Hydrogen-Bonding Interaction -- 1.3.4 Release of Enthalpy-Rich Water -- 1.3.5 Release of Conformational Strain -- 1.3.6 Inclusion Complex Formation with Various Environments -- 1.4 Important Parameters in Inclusion Complex Formation -- 1.4.1 Effects of Temperature -- 1.4.2 Use of Solvents -- 1.4.3 Effects of Water -- 1.4.4 Solution Dynamics -- 1.4.5 Volatile Guests -- 1.5 Inclusion Complex Formation Methods -- 1.5.1 Coprecipitation -- 1.5.2 Slurry Complex Formation -- 1.5.3 Paste Complexation -- 1.5.4 Wet Mixing and Heating -- 1.5.5 Extrusion -- 1.5.6 Dry Mixing -- 1.6 Methods for Drying of Complexes -- 1.6.1 Highly Volatile Guests -- 1.6.2 Spray Drying -- 1.6.3 Low-Temperature Drying -- 1.7 Release of the Complex -- 1.8 Application of Inclusion Compounds -- 1.8.1 Characterization of Inclusion Complexes -- 1.9 Applications of Cyclodextrins -- 1.9.1 Cosmetics, Personal Care, and Make Up -- 1.9.2 Foods and Flavors -- 1.9.3 Pharmaceuticals -- 1.9.3.1 Drug Delivery -- 1.9.3.2 Gene Delivery -- 1.9.4 Cyclodextrin Applications in Agricultural and Chemical Industries -- 1.9.5 Encapsulation of Various Guest Molecules -- 1.9.6 Supramolecular Polymer Base on Host-Guest Complexes -- 1.10 Characterization and Experimental Techniques -- 1.10.1 NMR Spectroscopy -- 1.10.2 FTIR Spectroscopy -- 1.10.3 X-ray Diffraction -- 1.10.4 Thermogravimetric Analysis -- 1.10.5 UV-Vis Spectral Changes -- 1.10.6 Phase Solubility Technique -- References -- Chapter 2 Supramolecular Chemistry and Rotaxane.
2.1 What Is Supramolecular Chemistry -- 2.1.1 History of Supramolecular Chemistry -- 2.1.2 Concept of Supramolecular Chemistry -- 2.1.2.1 Noncovalent Interactions -- 2.1.2.2 Electrostatic Interactions -- 2.1.2.3 Hydrogen Bonding -- 2.1.2.4 Van der Waals Interactions -- 2.1.2.5 Hydrophobic Effect -- 2.2 Host-Guest Chemistry -- 2.2.1 Cyclodextrins as Supramolecular Hosts -- 2.3 Cyclodextrin-Containing Supramolecular Structures -- 2.3.1 Cyclodextrins -- 2.3.2 Cyclodextrin Shape and Inclusion Complex Formation -- 2.4 Supramolecular Chemistry -- 2.4.1 Cyclodextrin Rotaxanes -- 2.4.2 Studies on Responsive CD-Based Polymers -- 2.4.2.1 Cyclodextrin Dimers -- 2.4.2.2 Catenanes -- 2.4.2.3 Rotaxanes -- 2.5 Cyclodextrin-based Rotaxanes and Pseudorotaxanes -- 2.5.1 Pseudopolyrotaxanes -- 2.5.1.1 Synthetic Route -- 2.5.2 Polyrotaxanes and Pseudopolyrotaxanes Based on Cyclodextrins -- 2.5.3 Cyclodextrin-based Polyrotaxanes -- 2.5.4 Cyclodextrin Molecular Tubes -- 2.5.4.1 Cyclodextrin-Based Nanotube Structure -- References -- Chapter 3 Smart Polymers -- 3.1 Introduction -- 3.2 Supramolecular Self-Assembly -- 3.3 Synthesis of Block Copolymers -- 3.3.1 Free and Living Radical Polymerization -- 3.3.2 Block Copolymers -- 3.4 Self-Assembly of Amphiphilic Block Copolymers -- 3.4.1 Smart Polymers Synthesized Based on Living Controlled Radical Polymerization -- 3.4.2 Definition of Self-Assembly -- 3.4.3 Self-Assembled Structures Based on Block Copolymers -- 3.4.3.1 Micelles -- 3.4.3.2 Vesicles -- 3.4.3.3 Dendrons and Dendrimers -- 3.5 Stimuli-Sensitive Supramolecular Structures -- 3.5.1 Stimuli-Responsive Polymers Based on Cyclodextrins -- 3.5.2 pH-Responsive Systems -- 3.5.3 Temperature-Responsive Systems -- 3.5.4 Redox-Responsive Systems -- 3.5.5 Other Stimuli-Responsive Hydrogels -- 3.5.5.1 Light-Sensitive Materials -- 3.5.5.2 Photoresponsive Polymers.
3.5.5.3 Photoresponsive Liposomes -- 3.5.5.4 Photoresponsive Micelles -- 3.5.5.5 Photoresponsive Vesicles -- 3.5.5.6 Electroresponsive Polymers -- 3.5.5.7 Magnetic-Responsive Polymers -- 3.6 Polymers with Dual-Stimuli Responsiveness -- 3.6.1 Cyclodextrins for Synthesis of Responsive Supramolecules -- 3.6.2 pH-Responsive Inclusion Complexes -- 3.6.3 Temperature-Responsive Inclusion Complexes -- 3.6.4 Photoresponsive Inclusion Complexes -- 3.6.5 pH-Sensitive Polyrotaxane -- 3.7 Stimuli-Sensitive Polyrotaxane for Drug Delivery -- 3.7.1 Photoresponsive Inclusion Complex Application -- 3.7.2 Redox-Responsive Inclusion Complexes Applications -- 3.8 Multi-Stimuli-Responsive Inclusion Complexes -- 3.8.1 pH- and Temperature-Responsive Inclusion Complexes Applications -- 3.8.2 pH- and Redox-Responsive Inclusion Complexes Applications -- 3.8.3 Temperature- and Photoresponsive Inclusion Complexes Applications -- 3.8.4 Temperature- and Redox-Responsive Inclusion Complexes Applications -- References -- Chapter 4 Basics of Corrosion -- 4.1 Introduction to Corrosion and Its Types -- 4.1.1 Corrosion -- 4.1.2 Forms of Corrosion -- 4.1.2.1 Uniform Corrosion -- 4.1.2.2 Galvanic Corrosion -- 4.1.2.3 Pitting Corrosion -- 4.1.2.4 Crevice Corrosion -- 4.1.2.5 Intergranular Corrosion (IGC) -- 4.1.2.6 Dealloying Corrosion -- 4.1.2.7 Stress Corrosion Cracking (SCC) -- 4.1.2.8 Erosion Corrosion -- 4.2 Corrosion Protection -- 4.2.1 Anticorrosion Methods -- 4.2.2 Anticorrosion Coating -- 4.3 An Introduction to Self-healing Coatings -- 4.3.1 Classification of Self-healing Approaches -- 4.3.1.1 Materials with Intrinsic Self-healing -- 4.3.1.2 Capsule-based Sealing Approach -- 4.3.1.3 Vascular Self-healing Materials -- 4.3.1.4 Active Anticorrosion Coatings -- 4.4 Protective Coatings Containing Corrosion Inhibitors -- 4.5 An Introduction to Sol-Gel -- 4.5.1 Sol-Gel Chemistry.
4.5.2 General Procedures Involved in the Preparation of Sol-Gel Coatings -- 4.5.3 Applications of Sol-Gel-Derived Coating -- 4.5.3.1 Corrosion Protective Sol-Gel Coatings -- 4.5.3.2 Organic-Inorganic Hybrid (OIH) Sol-Gel Coatings -- 4.6 Addition of Corrosion Inhibitors to Sol-Gel Coating Micro-/Nanoparticles -- 4.6.1 Direct Addition of Inhibitor -- 4.6.1.1 Inorganic Inhibitors -- 4.7 Self-healing Coating Containing Corrosion Inhibitor Capsules -- 4.7.1 Self-healing Anticorrosion Coatings Based on Nano-/Microcontainers Loaded with Corrosion Inhibitors -- 4.7.2 Preparation of Supramolecular Corrosion Inhibitor Nanocontainers for Self-protective Hybrid Nanocomposite Coatings -- 4.7.2.1 Formation of Cyclodextrin-Inhibitor Inclusion Complexes -- 4.7.2.2 Characterization of Encapsulated Organic Corrosion Inhibitors -- 4.8 Morphology of the Smart Corrosion Inhibitor Nanocontainers -- 4.8.1 Microstructural Characterization -- 4.8.2 Self-healing Mechanism of Corrosion Inhibitor Nanocontainers -- 4.8.3 EIS Measurement of Coating Containing Inhibitor Nanocontainers -- 4.8.4 Salt Spray Test for Investigation of Anticorrosive Performance of the Nanocapsules Incorporated Coating -- 4.8.5 Controlled Release of Inhibitors from Nanocontainers Obtained by Encapsulation of Inhibitor Corrosion in CDs -- 4.9 Concluding Remarks -- References -- Chapter 5 Phytochemicals -- 5.1 Phenolic Acids -- 5.1.1 Polyphenolic Antioxidant Property -- 5.1.2 Phenolic Compounds and Free Radicals -- 5.1.3 Extraction of Plant Polyphenols -- 5.2 Flavanoids -- 5.2.1 Flavones -- 5.2.2 Catechins -- 5.2.3 Isoflavonoids -- 5.2.4 Tannins -- 5.2.5 Anthocyanidins -- 5.2.6 Lignans and Stilbenes -- 5.2.7 Alkaloids and Other Nitrogen-containing Metabolites -- 5.3 Phytochemical Importance -- 5.3.1 Oxidative Stress and Phenolic Compounds in Foods -- 5.3.2 Important Parameters for Phenolic Efficiency.
5.4 Encapsulation -- 5.4.1 Polyphenol Encapsulation -- 5.4.2 Physical Methods -- 5.4.2.1 Spray-drying -- 5.4.2.2 Fluid Bed Coating -- 5.4.2.3 Extrusion-Spheronization Technique -- 5.4.2.4 Centrifugal Extrusion -- 5.4.2.5 Supercritical Fluids -- 5.4.3 Physicochemical Methods -- 5.4.3.1 Spray-cooling/Chilling -- 5.4.3.2 Encapsulation by Emulsions -- 5.4.3.3 Coacervation -- 5.4.3.4 Ultrasonication -- 5.4.4 Chemical Methods -- 5.4.4.1 Micelles -- 5.4.4.2 Liposomes -- 5.4.4.3 In Situ Polymerization -- 5.4.4.4 Interfacial Polymerization -- 5.4.4.5 Freeze-drying -- 5.5 Encapsulation of Phenolic Compounds Via Cyclodextrin -- 5.5.1 Cyclodextrin Inclusion Complexes Formation -- 5.5.2 Polyphenol Encapsulation in Cyclodextrins -- 5.5.3 Solubilization and Stabilization of Polyphenols -- 5.6 Why Encapsulation by Cyclodextrin? -- 5.6.1 Cyclodextrins and Flavonoids -- 5.7 Concluding Remarks -- References -- Chapter 6 Cyclodextrins Application as Macroinitiator -- 6.1 Cyclodextrins Application as Macroinitiator in Polyrotaxane Synthesis Via ATRP -- 6.2 Inclusion Complexes of PDMS and & -- rmgamma -- CD Without Utilizing Sonic Energy -- 6.3 Supramolecular Pentablock Copolymer Containing Via ATRP of Styrene and Vinyl Acetate Based on PDMS/CD Inclusion Complexes as Macroinitiator -- 6.3.1 Complex Formation of -CD with Br-PDMS-Br -- 6.3.2 Characterization of Polyrotaxane-based Pentablock Copolymers -- 6.4 Synthesis and Characterization of Poly(vinylacetate)-b-Polystyrene-b-(Polydimethyl siloxane/cyclodextrin)-b-Polystyrene-b-Poly(vinyl acetate) Pentablock Copolymers -- 6.4.1 Preparation of PDMS Macroinitiator (Br-PDMS-Br) -- 6.4.2 Polymerization of St and PVAc Initiated by PDMS-CDs Macroinitiator -- 6.4.3 Microstructural Studies of the Pentablock Copolymers -- 6.5 Conclusion -- References -- Chapter 7 Cyclodextrin Applications.
Özet:
The comprehensive resource for understanding the structure, properties, and applications of cyclodextrins Cyclodextrins: Properties and Industrial Applications is a comprehensive resource that includes information on cyclodextrins (CDs) structure, their properties, formation of inclusion complex with various compounds as well as their applications. The authors Sahar Amiri and Sanam Amiri, noted experts in the field of cyclodextrins, cover both the basic and applied science in chemistry, biology, and physics of CDs and offers scientists and engineers an understand of cyclodextrins. Cyclodextrins are a family of cyclic oligosaccharides consisting of (a-1,4)-linked a-D-glucopyranose units. The formation of inclusion complex between CDs as host and guest molecules is based on non-covalent interaction such as hydrogen bonding or van der waals interactions and lead to the formation of supramolecular structures. These supramolecular structures can be used as macroinitiator for initiating various type of reactions. CDs are widely used in many industrial products such as pharmacy, food and flavours, chemistry, chromatography, catalysis, biotechnology, agriculture, cosmetics, hygiene, medicine, textiles, drug delivery, packing, separation processes, environment protection, fermentation, and catalysis. This important resource: -Offers a basic understanding of cyclodextrins for researchers and engineers -Includes information of the basic structure of cyclodextrins and their properties -Reviews how cyclodextrins can be applied in a variety of fields including medicine, chemistry, textiles, packing, and many others -Shows how encapsulate corrosion inhibitors became active in corrosive electrolytes to ensure delivery of the inhibitors to corrosion sites and long-term corrosion protection Cyclodextrins offers research scientists and engineers a wealth of information about CDs with particular focus on how cyclodextrins are applied in various ways including in drug delivery, the food industry, and many other areas.
Notlar:
John Wiley and Sons
Tür:
Yazar Ek Girişi:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119247609Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 593923-1001 | QD321 | Arıyor... | Arıyor... |
