
Başlık:
Artificial intelligence in performance-driven design : theories, methods, and tools
Yazar:
Abbasabadi, Narjes, editor.
ISBN:
9781394172092
9781394172078
9781394172085
Basım Bilgisi:
First edition.
Fiziksel Tanımlama:
1 online resource (xix, 283 pages) : illustrations (chiefly color)
İçerik:
List of Contributors xi -- Introduction xiii -- 1 Augmented Computational Design 1 -- Introduction 1 -- Background 2 -- Relevance of AI in AEC 2 -- Historical Context 3 -- Design as Decision-Making 5 -- AI for Generative Design 7 -- Framework 9 -- Design Space Exploration 11 -- Spatial Design Variables 13 -- Statistical Approaches to Design 14 -- Demonstration 15 -- Case Study 15 -- Methodology 16 -- Results 21 -- BBN Validation Results 21 -- Toy Problem 22 -- Discussion 22 -- Outlook 25 -- Acronyms 26 -- Notations 27 -- References 28 -- 2 Machine Learning in Urban Building Energy Modeling 31 -- Introduction 31 -- Urban Building Energy Modeling Methods 32 -- Top-Down Models 33 -- Bottom-Up Models 33 -- Uncertainty in Urban Building Energy Modeling 36 -- Epistemic Uncertainty 36 -- Stochastic Uncertainty 36 -- Addressing Uncertainty 37 -- Machine Learning in Urban Building Energy Modeling 39 -- Supervised Learning 39 -- Unsupervised Learning 44 -- Reinforcement Learning 46 -- Machine Learning-Based Surrogate UBEM 47 -- Conclusion 49 -- References 50 -- 3 A Hybrid Physics-Based Machine Learning Approach for Integrated Energy and Exposure Modeling 57 -- Introduction 57 -- Materials and Methods 59 -- Data, Data Sources, and Dataset Processing 59 -- Methodology 61 -- Results 70 -- Physics-Based Simulation 70 -- Data-Driven Computation (Prediction) 70 -- Discussion 73 -- Conclusion 74 -- Acknowledgment 75 -- References 75 -- 4 An Integrative Deep Performance Framework for Daylight Prediction in Early Design -- Ideation 81 -- Introduction 81 -- Background 83 -- Daylight Simulation 84 -- Deep Learning Models 85 -- DL-Based Surrogate Modeling 85 -- Verification Methods 85 -- Research Methods 86 -- Data Acquisition 86 -- Model Training 88 -- Results and Validation 88 -- Discussions of Results 90 -- Conclusions 94 -- References 94 -- 5 Artificial Intelligence in Building Enclosure Performance Optimization: Frameworks, Methods, and Tools 97 -- Building Envelope and Performance 97 -- Artificial Intelligence and Building Envelope Overview 97 -- Optimization Routes and Building Envelope 98 -- Optimization Frameworks 99 -- Optimization Methods 99 -- Machine Learning and Building Envelope 101 -- Artificial Neural Network 101 -- Convolutional Neural Network 105 -- Recurrent Neural Network 105 -- Generative Adversarial Networks 106 -- Ensemble Learning 107 -- Discussions on Practical Implications 108 -- Summary and Conclusion 109 -- References 110 -- 6 Efficient Parametric Design-Space Exploration with Reinforcement Learning-Based Recommenders 113 -- Introduction 113 -- Methodology 115 -- Section 01: Clustering Design Options 116 -- Section 02: Reinforcement Learning-Based Recommender System 120 -- Design Dashboard 123 -- Discussion 124 -- Conclusion 125 -- References 126 -- 7 Multi-Level Optimization of UHP-FRC Sandwich Panels for Building Façade Systems 129 -- Introduction 129 -- Building Façade Design Optimization 130 -- Methodology 134 -- Midspan Displacements and Thermal Resistivity of UHP-FRC Panels 136 -- Energy Performance of the UHP-FRC Panels at the Building Level 141 -- Life Cycle Cost Analysis of the UHP-FRC Panels 142 -- Surrogate Models 145 -- Multi-objective Optimization Algorithm 147 -- Results and Discussion 148 -- Surrogate Models 148 -- Pareto Front Solutions 151 -- Conclusion 152 -- References 153 -- 8 Decoding Global Indoor Health Perception on Social Media Through NLP and Transformer Deep Learning 159 -- Introduction 159 -- Literature Review 161 -- Social Media and Urban Life: Theories, Challenges, and Opportunities 161 -- Methods for Computing Social Media Data in Environmental Studies 163 -- Materials and Methods 168 -- Data Query 168 -- Text Preprocessing 169 -- Text Tokenization 169 -- Text Summarization 170 -- Generating Co-occurrence Matrix 170 -- Sentiment Analysis and Classification 170 -- Visualizations 171 -- Embedding Visualization 171 -- Attention Score Visualization (Attention Map) and Interpretation 172 -- Results and Discussion 173 -- Conclusion 178 -- References 179 -- 9 Occupant-Driven Urban Building Energy Efficiency via Ambient Intelligence 187 -- Introduction 187 -- Occupancy and Building Energy Use 191 -- Definitions 191 -- Occupant Monitoring Methods 193 -- Occupant Monitoring Via Observational Studies 194 -- Occupant Monitoring via Experimental Studies 195 -- Occupant-driven Energy Efficiency via Ambient Intelligence 196 -- Ambient Intelligence Advancements and Applications 196 -- AmI-Based Energy Efficiency Feedback (EEF) Systems 197 -- Energy Efficiency via AmI Systems and Digital Twins Technology 201 -- Conclusion 202 -- References 203 -- 10 Understanding Social Dynamics in Urban Building and Transportation Energy Behavior 211 -- Introduction 211 -- Methodology 213 -- Modeling Framework 214 -- Explanatory Model 214 -- Data 215 -- Results and Discussion 219 -- Effects of Occupancy and Socio-economic Factors 219 -- Variable Importance (VI) 219 -- Lek's Profile 219 -- Conclusion 226 -- References 227 -- 11 Building Better Spaces: Using Virtual Reality to Improve Building Performance 231 -- Introduction 231 -- Applications of Virtual Reality in Building Performance 233 -- Virtual Reality for Improving Building Design through Integrated Performance Data 233 -- Virtual Reality for Building Design Reviews and Education in Architecture and Engineering 236 -- Virtual Reality for Research on Building Occupant Comfort and Well-Being 240 -- Conclusion 243 -- References 245 -- 12 Digital Twin for Citywide Energy Modeling and Management 251 -- Introduction 251 -- Urban Building Energy Digital Twins (UBEDTs) 252 -- Definition and Conceptualization 252 -- Implications for Citywide Energy Management 254 -- Enabling Technologies 256 -- Twining Technologies 256 -- Urban Digital Twin(UDT) and Data Sources 258 -- Artificial Intelligence (AI) and Digital Twin 260 -- Relationship Between IoT, Big Data, AI-ML, and Digital Twins 261 -- Interoperability Technologies 262 -- Maturity Levels 263 -- Architecture 265 -- Data Acquisition Layer 266 -- Transmission Layer 266 -- Modeling and Simulation Layer 266 -- Data/Model Integration Layer 269 -- Service/Actuation Layer 269 -- Challenges in Implementing Citywide Digital Twins 269 -- Data Quality and Availability 270 -- Required Smart Infrastructure and Associated Cost 270 -- Interoperability 270 -- Data Analysis 271 -- Cybersecurity and Privacy Concerns 271 -- Conclusion 272 -- References 272 -- Index 277.
Özet:
"The recent advances in data-driven approaches and big data initiatives provide enormous opportunities for sustainable design and research in decarbonization and digital transformation of the built environment. The Artificial Intelligence and Sustainable Design: Theories, Methods, and Tools book aims to comprehensively review the application of Artificial Intelligence (AI), particularly Machine Learning (ML), in enhancing performance-based design and offer advanced insight into different approaches, methods, and tools for bringing the power of AI in simulation platforms and leveraging digital twin throughout the life cycle of the built environment. The contents center on fundamentals of building science, including key performance indicators such as comfort, indoor/outdoor environmental quality, solar and daylight, and energy exploring human-centered and evidence-based design and optimization procedures and integrating intelligent systems for better understanding, designing, and managing our existing and future built environments"-- Provided by publisher.
Notlar:
John Wiley and Sons
Tür:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394172092Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 599010-1001 | TA347 .A78 A85 2024 | Arıyor... | Arıyor... |
