
Başlık:
AI and machine learning for network and security management
Yazar:
Wu, Yulei, author.
ISBN:
9781119835905
9781119835899
9781119835882
Fiziksel Tanımlama:
1 online resource (338 pages).
Seri:
IEEE Press series on networks and services management
IEEE Press series on networks and services management.
İçerik:
Intro -- Table of Contents -- Title Page -- Copyright -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- 1 Introduction -- 1.1 Introduction -- 1.2 Organization of the Book -- 1.3 Conclusion -- References -- 2 When Network and Security Management Meets AI and Machine Learning -- 2.1 Introduction -- 2.2 Architecture of Machine Learning-Empowered Network and Security Management -- 2.3 Supervised Learning -- 2.4 Semisupervised and Unsupervised Learning -- 2.5 Reinforcement Learning -- 2.6 Industry Products on Network and Security Management -- 2.7 Standards on Network and Security Management -- 2.8 Projects on Network and Security Management -- 2.9 Proof-of-Concepts on Network and Security Management -- 2.10 Conclusion -- References -- Notes -- 3 Learning Network Intents for Autonomous Network Management* -- 3.1 Introduction -- 3.2 Motivation -- 3.3 The Hierarchical Representation and Learning Framework for Intention Symbols Inference -- 3.4 Experiments -- 3.5 Conclusion -- References -- Notes -- 4 Virtual Network Embedding via Hierarchical Reinforcement Learning1 -- 4.1 Introduction -- 4.2 Motivation -- 4.3 Preliminaries and Notations -- 4.4 The Framework of VNE-HRL -- 4.5 Case Study -- 4.6 Related Work -- 4.7 Conclusion -- References -- Note -- 5 Concept Drift Detection for Network Traffic Classification -- 5.1 Related Concepts of Machine Learning in Data Stream Processing -- 5.2 Using an Active Approach to Solve Concept Drift in the Intrusion Detection Field -- 5.3 Concept Drift Detector Based on CVAE -- 5.4 Deployment and Experiment in Real Networks -- 5.5 Future Research Challenges and Open Issues -- 5.6 Conclusion -- References -- Note -- 6 Online Encrypted Traffic Classification Based on Lightweight Neural Networks* -- 6.1 Introduction -- 6.2 Motivation -- 6.3 Preliminaries -- 6.4 The Proposed Lightweight Model.
6.5 Case Study -- 6.6 Related Work -- 6.7 Conclusion -- References -- Notes -- 7 Context-Aware Learning for Robust Anomaly Detection* -- 7.1 Introduction -- 7.2 Pronouns -- 7.3 The Proposed Method -- AllRobust -- 7.4 Experiments -- 7.5 Discussion -- 7.6 Conclusion -- References -- Note -- 8 Anomaly Classification with Unknown, Imbalanced and Few Labeled Log Data -- 8.1 Introduction -- 8.2 Examples -- 8.3 Methodology -- 8.4 Experimental Results and Analysis -- 8.5 Discussion -- 8.6 Conclusion -- References -- Notes -- 9 Zero Trust Networks -- 9.1 Introduction to Zero-Trust Networks -- 9.2 Zero-Trust Network Solutions -- 9.3 Machine Learning Powered Zero Trust Networks -- 9.4 Conclusion -- References -- 10 Intelligent Network Management and Operation Systems -- 10.1 Introduction -- 10.2 Traditional Operation and Maintenance Systems -- 10.3 Security Operation and Maintenance -- 10.4 AIOps -- 10.5 Machine Learning-Based Network Security Monitoring and Management Systems -- 10.6 Conclusion -- References -- 11 Conclusions, and Research Challenges and Open Issues -- 11.1 Conclusions -- 11.2 Research Challenges and Open Issues -- References -- Index -- End User License Agreement.
Özet:
AI AND MACHINE LEARNING FOR NETWORK AND SECURITY MANAGEMENT Extensive Resource for Understanding Key Tasks of Network and Security Management AI and Machine Learning for Network and Security Management covers a range of key topics of network automation for network and security management, including resource allocation and scheduling, network planning and routing, encrypted traffic classification, anomaly detection, and security operations. In addition, the authors introduce their large-scale intelligent network management and operation system and elaborate on how the aforementioned areas can be integrated into this system, plus how the network service can benefit. Sample ideas covered in this thought-provoking work include: * How cognitive means, e.g., knowledge transfer, can help with network and security management * How different advanced AI and machine learning techniques can be useful and helpful to facilitate network automation * How the introduced techniques can be applied to many other related network and security management tasks Network engineers, content service providers, and cybersecurity service providers can use AI and Machine Learning for Network and Security Management to make better and more informed decisions in their areas of specialization. Students in a variety of related study programs will also derive value from the work by gaining a base understanding of historical foundational knowledge and seeing the key recent developments that have been made in the field.
Notlar:
John Wiley and Sons
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119835905Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 598294-1001 | Q335 .W8 2023 | Arıyor... | Arıyor... |
