Laser-based additive manufacturing : modeling, simulation, and experiments için kapak resmi
Başlık:
Laser-based additive manufacturing : modeling, simulation, and experiments
Yazar:
Dahotre, Narendra B., author.
ISBN:
9783527828821

9783527828814
Fiziksel Tanımlama:
1 online resource (1 volume)
İçerik:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acronyms -- Chapter 1 Introduction to Additive Manufacturing -- 1.1 Evolution of Manufacturing -- 1.2 Concept of AM -- 1.3 Advantages over Conventional Manufacturing Techniques -- 1.4 Laser-Based AM -- 1.4.1 Laser-Based Directed Energy Deposition -- 1.4.1.1 Machine Design -- 1.4.1.2 Process Parameters -- 1.4.2 Laser Powder Bed Fusion -- 1.4.2.1 Process Parameters -- 1.4.3 Estimation of Energy Input in LAM Processes -- 1.4.4 Multi-Step LAM Techniques -- References -- Chapter 2 Multiscale Computational Approaches to LAM -- 2.1 Computational Science -- 2.1.1 Computational Material Science -- 2.2 Multiscale Modeling -- 2.2.1 Nano-Micro-Scale Modeling -- 2.2.1.1 Molecular Dynamics and Density Functional Theory -- 2.2.1.2 Monte Carlo Method -- 2.2.2 Meso-Macro Scale Modeling -- 2.2.2.1 Kinetic Monte Carlo Method -- 2.2.2.2 Cellular Automata -- 2.2.2.3 Phase-Field Method -- 2.2.2.4 Finite Element Method -- 2.3 Integrated Computational Materials Engineering (ICME) -- References -- Chapter 3 Laser Matter Interaction in LAM -- 3.1 Introduction -- 3.1.1 Physical Phenomena in LAM -- 3.2 Components of Mathematical Models in Metal AM -- 3.3 Feedstock -- 3.3.1 Powder Bed Morphology in LPBF -- 3.3.1.1 Discrete Element Method -- 3.3.1.2 Powder Spreading Mechanism -- 3.3.2 Powder Stream Generation in LDED -- 3.3.2.1 Turbulent Gas Flow and Discrete Phase Model -- 3.3.2.2 Powder Stream Characteristics -- 3.3.3 Laser-Feedstock Interaction -- 3.4 Thermo-Fluidic Model in LAM -- 3.4.1 Laser Heat Source -- 3.4.2 Radiative and Convective Cooling -- 3.4.3 Recoil Pressure and Evaporative Cooling -- 3.4.4 Surface Tension -- 3.4.5 Free Surface Tracking Methods -- 3.5 Melt Hydrodynamics in LPBF -- 3.5.1 Thermo-Fluidic Anatomy of a Single Track -- 3.5.2 Conduction Mode LPBF -- 3.5.3 Keyhole Mode LPBF.

3.5.4 Energy Coupling Mechanism -- 3.6 Melt Hydrodynamics in LDED -- 3.7 Multi-Layer, Multi-Track Approach -- 3.8 Computational Cost -- 3.9 Computationally Efficient Approach -- 3.10 Guidelines for Experimental Validation -- References -- Chapter 4 Thermokinetics, Microstructural Evolution, and Material Response -- 4.1 Thermokinetics in LAM -- 4.2 Solidification -- 4.2.1 Nucleation -- 4.2.1.1 Heterogeneous Nucleation Assisted by Inoculants -- 4.2.1.2 Homogeneous Nucleation -- 4.2.1.3 Nucleation Influenced by Acoustic Cavitation -- 4.2.2 Solidification Variables -- 4.2.2.1 Thermal Gradient -- 4.2.2.2 Solidification Rate -- 4.2.3 Growth and Orientation -- 4.2.4 Solidification Modes -- 4.2.5 Spatial Variation of Thermokinetic Parameters -- 4.2.5.1 Dependence on the Curvature of the Trailing Boundary -- 4.2.5.2 Solidification Rate and Thermal Gradient -- 4.2.5.3 Morphology Factor and Cooling Rate Variation -- 4.2.5.4 Columnar-to-Equiaxed Transition -- 4.3 Thermal Cycles in LAM Processes -- 4.3.1 Thermal Cycles in LPBF -- 4.3.1.1 Thermal Cycles During Layer Fabrication -- 4.3.1.2 Thermal Cycles During Fabrication of Multiple Layers -- 4.3.2 Thermal Cycles in LDED -- 4.3.2.1 Thermal Cycles During the Deposition of a Layer -- 4.3.2.2 Thermal Cycles During Fabrication of Multiple Layers -- 4.4 Phase Transformations in LAM -- 4.4.1 Thermal Cycle-Driven Phase Evolution -- 4.4.2 Process-Driven Phase Transformations -- 4.4.2.1 Isothermal Effect -- 4.4.2.2 Process Parameters -- 4.5 Effect of Process Parameters -- 4.5.1 Laser Beam Attributes -- 4.5.1.1 Laser Beam Diameter -- 4.5.1.2 Laser Power -- 4.5.1.3 Laser Speed -- 4.5.2 Laser Process Attributes -- 4.5.2.1 Scanning Strategy -- 4.5.2.2 Preheating the Substrate -- 4.5.2.3 Build Orientation -- 4.5.2.4 Interlayer Duration -- 4.5.2.5 Feed Rate -- 4.6 Effect of Melting Modes -- 4.7 Laser Operation Modes.

4.8 Material Response -- 4.8.1 Mechanical Response -- 4.8.1.1 Elastic Modulus -- 4.8.1.2 Fatigue -- 4.8.1.3 Creep -- 4.8.1.4 Wear -- 4.8.2 Electrochemical Response -- References -- Chapter 5 Residual Stress in LAM -- 5.1 Introduction -- 5.2 Thermo-Mechanical Model: Mathematical Framework -- 5.2.1 Elasto-Plastic Mechanical Model -- 5.2.2 Stress-Strain Behavior -- 5.2.2.1 Elastic Region -- 5.2.2.2 Yield Stress -- 5.2.2.3 Plastic Region -- 5.2.2.4 Bauschinger Effect and Kinematic Hardening -- 5.2.3 Basic Elements of Elastic-Plastic Theory -- 5.2.3.1 Stress -- 5.2.3.2 Strain -- 5.2.3.3 Equation of Motion -- 5.2.3.4 Criterion for Initial Yielding -- 5.2.3.5 Flow Rule -- 5.2.3.6 Isotropic Strain Hardening -- 5.2.3.7 Viscoplasticity and Thermal Softening -- 5.2.3.8 Kinematic Hardening -- 5.2.3.9 Consistency Condition -- 5.2.3.10 Elastic-Plastic Stress-Strain Relation -- 5.3 Thermal Elastic-Plastic Formulation -- 5.3.1 Macro-Scale Approaches -- 5.4 Evolution of Residual Stress in LAM -- 5.4.1 Thermo-Mechanical Anatomy of a Single Track -- 5.4.2 Thermo-Mechanical Anatomy of a Single Layer -- 5.4.3 Stress Evolution at Component Scale -- 5.4.4 Experimental Validation of Residual Stress -- 5.4.5 Integrated Experimental and Numerical Approach for the Mitigation of Residual Stress -- 5.4.5.1 Role of the Scanning Strategy -- 5.4.5.2 Role of Preheating -- 5.4.5.3 Real-Time Control and Miscellaneous Approaches -- References -- Chapter 6 Surface Roughness in LAM -- 6.1 Introduction -- 6.2 Surface Roughness Characteristics in LAM -- 6.3 Surface Defects in LAM -- 6.4 Post-LAM Surface Finishing -- References -- Index -- EULA.
Özet:
Laser-Based Additive Manufacturing Explore laser-based additive manufacturing processes via multi-scale modeling and computer simulation In Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments, a distinguished team of researchers delivers an incisive framework for understanding materials processing using laser-based additive manufacturing (LAM). The book describes the use of computational modeling and simulation to explore and describe the LAM technique, to improve the compositional, phase, and microstructural evolution of the material, and to enhance the mechanical, chemical, and functional properties of the manufactured components. The accomplished authors combine a comprehensive overview of multi-scale modeling and simulation with experimental and practical observations, offering a systematic review of laser-material interactions in advanced LAM processes. They also describe the real-world applications of LAM, including component processing and surface functionalization. In addition to explorations of residual stresses, three-dimensional defects, and surface physical texture in LAM, readers will also find: - A thorough introduction to additive manufacturing (AM), including the advantages of AM over conventional manufacturing and the challenges involved with using the technology - A comprehensive exploration of computation materials science, including length-and time-scales in materials modeling and the current state of computational modeling in LAM - Practical discussions of laser-material interaction in LAM, including the conversion of light energy to heat, modes of heat dissipation, and the dynamics of the melt-pool - In-depth examinations of the microstructural and mechanical aspects of LAM integrated with modeling Perfect for materials scientists, mechanical engineers, and physicists, Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments is perfect for anyone seeking an insightful treatment of this cutting-edge technology in the areas of alloys, ceramics, and composites.
Notlar:
John Wiley and Sons
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 597825-1001 TS183.25 .D34 2022
Arıyor...

On Order