
Başlık:
A first course in abstract algebra : rings, groups, and fields
Yazar:
Anderson, Marlow, 1950- author.
ISBN:
9781482245530
Basım Bilgisi:
Third edition.
Fiziksel Tanımlama:
1 online resource (552 pages) : 40 illustrations
İçerik:
part 1 Part I: Numbers, Polynomials, and Factoring -- chapter 1 The Natural Numbers -- chapter 2 The Integers -- chapter 3 Modular Arithmetic -- chapter 4 Polynomials with Rational Coefficients -- chapter 5 Factorization of Polynomials -- chapter Section I in a Nutshell -- part Part II: Rings, Domains, and Fields -- chapter 6 Rings -- chapter 7 Subrings and Unity -- chapter 8 Integral Domains and Fields -- chapter 9 Ideals -- chapter 10 Polynomials over a Field -- chapter Section II in a Nutshell -- part 3 Part III: Ring Homomorphisms and Ideals -- chapter 11 Ring Homomorphisms -- chapter 12 The Kernel -- chapter 13 Rings of Cosets -- chapter 14 The Isomorphism Theorem for Rings -- chapter 15 Maximal and Prime Ideals -- chapter 16 The Chinese Remainder Theorem -- chapter Section III in a Nutshell -- part 4 Part IV: Groups -- chapter 17 Symmetries of Geometric Figures -- chapter 18 Permutations -- chapter 19 Abstract Groups -- chapter 20 Subgroups -- chapter 21 Cyclic Groups -- chapter Section IV in a Nutshell -- part 5 Part V: Group Homomorphisms -- chapter 22 Group Homomorphisms -- chapter 23 Structure and Representation -- chapter 24 Cosets and Lagrange’s Theorem -- chapter 25 Groups of Cosets -- chapter 26 The Isomorphism Theorem for Groups -- chapter Section V in a Nutshell -- part 6 Part VI: Topics from Group Theory -- chapter 27 The Alternating Groups -- chapter 28 Sylow Theory: The Preliminaries -- chapter 29 Sylow Theory: The Theorems -- chapter 30 Solvable Groups -- chapter Section VI in a Nutshell -- part 7 Part VII: Unique Factorization -- chapter 31 Quadratic Extensions of the Integers -- chapter 32 Factorization -- chapter 33 Unique Factorization -- chapter 34 Polynomials with Integer Coefficients -- chapter 35 Euclidean Domains -- chapter Section VII in a Nutshell -- part 8 Part VIII: Constructibility Problems -- chapter 36 Constructions with Compass and Straightedge -- chapter 37 Constructibility and Quadratic Field Extensions -- chapter 38 The Impossibility of Certain Constructions -- chapter Section VIII in a Nutshell -- part 9 Part IX: Vector Spaces and Field Extensions -- chapter 39 Vector Spaces I -- chapter 40 Vector Spaces II -- chapter 41 Field Extensions and Kronecker’s Theorem -- chapter 42 Algebraic Field Extensions -- chapter 43 Finite Extensions and Constructibility Revisited -- chapter Section IX in a Nutshell -- part 10 Part X: Galois Theory -- chapter 44 The Splitting Field -- chapter 45 Finite Fields -- chapter 46 Galois Groups -- chapter 47 The Fundamental Theorem of Galois Theory -- chapter 48 Solving Polynomials by Radicals -- chapter Section X in a Nutshell -- chapter Hints and Solutions -- chapter Guide to Notation.
Özet:
Like its popular predecessors, A First Course in Abstract Algebra: Rings, Groups, and Fields, Third Edition develops ring theory first by drawing on students’ familiarity with integers and polynomials. This unique approach motivates students in the study of abstract algebra and helps them understand the power of abstraction. The authors introduce groups later on using examples of symmetries of figures in the plane and space as well as permutations.
Yazar Ek Girişi:
Tüzel Kişi Ek Girişi:
Elektronik Erişim:
Click here to view.Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 541126-1001 | QA162 | Arıyor... | Arıyor... |
