Composites-based perovskite solar cells için kapak resmi
Başlık:
Composites-based perovskite solar cells
Yazar:
Hahn, Yoon-Bong, author
ISBN:
9783527844548

9783527844531
Fiziksel Tanımlama:
1 online resource (256 pages)
İçerik:
Preface -- 1 Introduction - Why Composites-Based Perovskite Solar Cells? -- 1.1 Need to Develop Composites-Based Perovskite Solar Cells -- 1.2 Fabrication Strategy for Composites-Based Perovskite Solar Cells -- References -- 2 Hybrid Perovskites and Solar Cells -- 2.1 Perovskite Materials -- 2.1.1 Three-Dimensional Perovskites -- 2.1.1.1 Lead-Based Perovskites -- 2.1.1.2 Lead-Tin-Mixed Perovskites -- 2.1.1.3 Tin-Based Perovskites -- 2.1.1.4 All Inorganic Perovskites -- 2.1.2 Low-Dimensional Perovskites -- 2.1.2.1 Ruddlesden-Popper (RP) 2D Perovskites -- 2.1.2.2 Dion-Jacobson (DJ) 2D Perovskites -- 2.1.2.3 One-/Zero-Dimensional (1D/0D) Perovskites -- 2.1.3 Single-Crystal Perovskites -- 2.1.4 Dynamics of Perovskite Crystal Growth -- 2.2 Perovskite Solar Cells -- 2.2.1 Working Principles of Perovskite Solar Cell -- 2.2.2 Configurations of Perovskite Solar Cell -- 2.2.2.1 n-i-p-Based Traditional Structure -- 2.2.2.2 p-i-n-Based Inverted Structure -- 2.2.2.3 Hole/Electron-Transport-Free Simple Structure -- 2.2.2.4 Flexible Perovskite Solar Cells -- 2.2.2.5 Semitransparent Perovskite Solar Cells -- 2.3 Limitations and Improvements of Energy Conversion in Perovskite Solar Cells -- 2.3.1 Limitation Parameters -- 2.3.1.1 Energy Gap -- 2.3.1.2 Interface Defects -- 2.3.2 Improvement of the Efficiency of Solar Cells -- References -- 3 Fundamentals and Benefits of Functional Composite Materials -- 3.1 Introduction to Composite Functional Materials -- 3.1.1 Definition of Composite Material -- 3.1.2 Properties of Composite Materials -- 3.1.3 Advantages of Composites for Perovskite Solar Cells -- 3.2 Development of Composites-Based Perovskite Solar Cells -- 3.2.1 Alloy Structure in A, B, or X Site -- 3.2.2 Composite Perovskites -- 3.2.3 Composite-Based Charge Transport Layers -- 3.2.4 Composite-Based Electrodes -- References -- 4 Stability and Efficiency Loss Issues of Perovskite-Based Devices -- 4.1 Materials Instability -- 4.1.1 Moisture-Induced Perovskite Degradation -- 4.1.2 Photo-Induced Perovskite Degradation -- 4.1.3 Heat-Induced Perovskite Degradation -- 4.1.4 The Point Defects Induced Perovskite Degradation -- 4.1.5 Defects at Perovskite Film Surface/Buried Interfaces -- 4.1.6 Strain-Induced Perovskite Lattice Distortion and Phase Instability -- 4.1.7 Ions Migration of Perovskites -- 4.1.8 Device Efficiency Loss Induced by Materials Instability -- 4.2 Device Heterointerface Instability -- 4.2.1 Heterointerface Defects of Perovskite/ETL -- 4.2.2 Heterointerface Defects of Perovskite/HTL -- 4.2.3 Interaction with Metal Electrodes -- 4.2.4 Efficiency Loss Induced by Heterointerfaces Instability -- 4.3 Solutions for Instability Problems -- 4.3.1 Development of Perovskite Composites -- 4.3.2 Design of Device Structures -- 4.3.3 Robust Design of Device Encapsulation -- References -- 5 Composites-Based Charge-Transport and Interfacial Materials -- 5.1 Organic-Based Composites -- 5.1.1 ETL Materials -- 5.1.2 HTL Materials -- 5.2 Inorganic-Based Composites with Metal and Metal Oxide -- 5.2.1 ETL Materials -- 5.2.2 HTL Materials -- 5.3 Carbon-Based Composites -- 5.3.1 ETL Materials -- 5.3.2 HTL Materials -- 5.3.3 Carbon-Based Composites for Interfacial Layer -- References -- 6 Composite-Based Pb-Perovskite Materials as Absorbers -- 6.1 Organic Additives-Based Perovskite Composites -- 6.1.1 Organic Ammonium Halides -- 6.1.2 Organic Small Molecules -- 6.1.3 Polymer-Based Materials -- 6.2 Inorganic Additives-Based Perovskite Composites -- 6.2.1 Metal Oxides -- 6.2.2 Semitransparent Perovskite Solar Cells with Metal Oxide-Based Composites -- 6.2.3 Carbon, Graphene, and Its Derivatives -- 6.2.4 Alkali Halide Additives -- 6.2.5 Others -- 6.3 Low-Dimensional (LD)/Three-Dimensional (3D) Heterostructure Perovskite Composites -- 6.3.1 2D-3D Composites -- 6.3.2 1D-3D Composites -- 6.3.3 0D-3D Composites -- 6.4 Quantum Dot (QD) Additives-Based Perovskite Composites -- 6.4.1 Perovskite QD-Based Composites -- 6.4.2 Carbon QD-Based Composites -- 6.5 Reduced Film Strain by Composites-Based Perovskites -- 6.5.1 Reduce Lattice Strain by Compositional Design -- 6.5.2 Control Crystallization by Chemical Interaction -- 6.5.3 Facilitate Strain Release by Heterostructure Interfaces -- References -- 7 Composites-Based Pb-Free Perovskite Materials as Absorbers -- 7.1 Inorganic Additives-Based Perovskite Composites -- 7.1.1 SnF 2 Additive -- 7.1.2 SnCl 2 Additive -- 7.1.3 Hydrazine Additive -- 7.1.4 Acidic Additive -- 7.1.5 Other Additives -- 7.2 Organic Additives-Based Perovskite Composites -- 7.3 Carbon Additives-Based Perovskite Composites -- References -- 8 Composite-Based Perovskite Materials in Tandem Solar Cells -- 8.1 Introduction -- 8.2 Configuration of Perovskite-Based Tandems -- 8.2.1 Perovskite/Si Tandems -- 8.2.2 All Perovskite Tandems -- 8.2.3 Perovskite/Organic Tandems -- 8.2.4 Perovskite/CIGS Tandems -- 8.3 Perovskite Alloy-Based Composites as Absorbers -- 8.3.1 A-Site Alloy-Based Composites -- 8.3.2 X-Site Alloy-Based Composites -- 8.3.3 B-Site Alloy-Based Composites -- 8.4 Additives-Based Perovskite Composites as Absorbers -- 8.4.1 Additive-Based Wide-Bandgap Perovskite Composites -- 8.4.2 Additive-Based Narrow-Bandgap Perovskite Composites -- 8.4.3 2D-3D-Based Wide-Bandgap Perovskite Composites -- 8.4.4 2D-3D-Based Narrow-Bandgap Perovskite Composites -- 8.5 Composite-Based Interconnection Layers (ICLs) -- 8.5.1 Composite-Based Interconnection Layers (ICLs) in Perovskite/Si Tandems -- 8.5.2 Composite-Based Interconnection Layers (ICLs) in All Perovskite Tandems -- 8.5.3 Composite-Based Interconnection Layers (ICLs) in Perovskite/Organic Tandems -- 8.6 Composite-Based Charge Transport Layers -- 8.6.1 Composite-Based Hole Transport Layers in Tandems -- 8.6.2 Composite-Based Electron Transport Layers in Tandems -- 8.7 Composite-Based Interfacial Layers in Tandems -- 8.7.1 Composite-Based Buffer Layers -- 8.7.2 Composite-Based Passivation Layer -- References -- 9 Issues for Commercialization of Perovskite Solar Cells -- 9.1 Introduction to The Current Status of Perovskite Solar Cells -- 9.2 Solutions to Stability Issues -- 9.2.1 Evaluation Standards -- 9.2.2 Internal Encapsulation -- 9.2.3 External Encapsulation -- 9.3 Upscaling, Commercialization, and Challenges -- 9.3.1 Scalable Fabrication Methods -- 9.3.2 Module Design and Process -- 9.4 Status of Solar Modules Production -- 9.4.1 Module Efficiency -- 9.4.2 Market Prospect -- 9.4.3 The Toxicity Issues of Lead in Modules -- References -- 10 Characterization Methods for Composite-Based Perovskite Solar Cells -- 10.1 Composite-Based Perovskite Films Characterization -- 10.1.1 Growth Dynamics of Composite-Based Perovskites -- 10.1.2 Optical and Electrical Properties of Composite-Based Films -- 10.1.3 Heterogeneity of Composite-Based Films -- 10.1.4 Chemical Interactions and Simulations -- 10.1.4.1 Chemical Interactions -- 10.1.4.2 Simulations -- 10.2 Devices Characterization -- 10.2.1 Carrier Mobility and Dynamics -- 10.2.2 Trap Densities -- 10.2.3 Stability Characterization -- References -- 11 Perspectives and Future Work of Composites-Based Perovskite Solar Cells -- 11.1 Perspectives of Composites-Based Perovskite Solar Cells -- 11.2 Future Work for Composites-Based Perovskite Solar Cells -- 11.2.1 Scale-Up Processing Technology -- 11.2.2 Green Production Technology -- 11.2.3 Cyclic Utilization of Lead Components for Perovskite Precursors -- References -- Index.
Özet:
An introduction to a key tool in the cultivation of sustainable energy sources Composite materials combine two or more materials with distinct chemical properties. These composites can improve on design flexibility, specialization of properties, chemical resistance, and other advantages relative to traditional materials. Perovskite solar cells based on composite materials might therefore acquire the capacity to solve a range of critical issues. Composites-Based Perovskite Solar Cells offers an overview of these cells, their properties, and their applications. Beginning with an introduction to the fundamental principles of perovskite solar cell construction, the book surveys different configurations, stability issues, and much more. The result is a one-stop shop for anyone looking to understand these potentially critical tools in the fight for a sustainable energy grid. Readers will also find: Methods for fabricating perovskite-based solar cells Detailed discussion of Pb-perovskites and Pb-free perovskites, composites-based materials in tandem solar cells, and many more A unique perspective from which to revisit approaches developed in the community of materials scientists Composites-Based Perovskite Solar Cells is ideal for surface physicists and chemists, solid state physicists and chemists, electrical engineers, and materials scientists of all kinds.
Notlar:
John Wiley and Sons
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 599819-1001 TK2963 .P47
Arıyor...

On Order