
Başlık:
Data-driven energy management and tariff optimization in power systems : shaping the future of electricity distribution through analytics
Yazar:
Arasteh, Hamidreza, editor
ISBN:
9781394290307
9781394290284
9781394290291
Fiziksel Tanımlama:
1 online resource.
Genel Not:
Includes index.
İçerik:
About the Editors xiii -- List of Contributors xv -- Preface xix -- 1 Fundamentals of Power System Data and Analytics 1 Pouya Ramezanzadeh, Mohsen Parsa Moghaddam, and Reza Zamani -- 1.1 Introduction 1 -- 1.2 Background 2 -- 1.2.1 Concept, Opportunities, and Challenges of Present and Future Power Systems 2 -- 1.2.2 Transformation in the Power Industry 3 -- 1.2.3 Drivers and Barriers 6 -- 1.3 Data-rich Power Systems 6 -- 1.3.1 Data Sources and Types 8 -- 1.3.2 Data Structure 10 -- 1.4 Data Analytics in Power Systems 11 -- 1.4.1 What Is Data Analytics? 12 -- 1.4.2 Analytics Techniques 12 -- 1.5 Data Analytics-Based Decision-Making in Future Power Systems 13 -- 1.5.1 Decision Framework 15 -- 1.5.1.1 Uncertainty Issues 15 -- 1.5.1.2 Behavioral Analytics 15 -- 1.5.1.3 Policy Mechanisms 15 -- 1.5.2 Computational Aspects 16 -- 1.6 Conclusion 16 -- 1.7 Future Trends and Challenges 16 -- References 17 -- 2 Advanced Predictive Modeling for Energy Consumption and Demand 21 Seyed Mohsen Hashemi and Abbas Marini -- 2.1 The Role of Load Forecasting in Power System Planning 21 -- 2.2 Need for Short-Term Demand Forecasting 22 -- 2.3 Components of Power Demand and Factors Affecting Demand Growth 22 -- 2.3.1 Electricity Demand from the Consumer Type Perspective 23 -- 2.3.2 Electricity Demand from the Supply Perspective 23 -- 2.4 Electricity Demand in Networks with High Renewable Energy Sources 24 -- 2.5 Machine Learning and Its Applications in Demand Forecast 25 -- 2.5.1 Application of Clustering in Load Forecasting 27 -- 2.6 The Impact of Macro-decisions on Long-term Load Forecasting 28 -- 2.6.1 Natural Gas as a Primary Energy Carrier for Heating Demand 29 -- 2.7 Conclusion 34 -- References 35 -- 3 Demand Response and Customer-Centric Energy Management 39 Alireza Mansoori, Mohsen Parsa Moghaddam, and Reza Zamani -- 3.1 Introduction 39 -- 3.2 Background 39 -- 3.3 Future Power Systems Aspects, Trends, and Challenges 41 -- 3.4 Transforming to Customer-Centric Era 41 -- 3.4.1 Differences Between Customer-Centric DR Solution and OtherWays in the Future -- Power System 42 -- 3.4.2 Drivers and Enablers 42 -- 3.5 Customer-Centric Power System Structure 45 -- 3.5.1 Physical Layer 45 -- 3.5.1.1 Physical Resources 45 -- 3.5.1.2 Physical Constraints of the System 46 -- 3.5.2 Cyber-Social Layers 49 -- 3.5.2.1 Centralized Approach (Traditional) 50 -- 3.5.2.2 Decentralized Approach (Future) 50 -- 3.6 Conclusion and Future Trends 54 -- References 57 -- 4 Applications of Data Mining in Industrial Tariff Design and Energy Management: Concepts and Practical Insights 61 Hamidreza Arasteh, Niki Moslemi, Majid Miri Larimi, Pierluigi Siano, Sobhan Naderian, andJosep M. Guerrero -- 4.1 Introduction 61 -- 4.1.1 Data Mining: Concepts, Procedures, and Tools 61 -- 4.1.2 Energy Management and the Role of Data Mining 65 -- 4.1.3 Aims and Scope 66 -- 4.2 Investigating Industrial Load Data: Analysis Through Various Indexes 67 -- 4.3 Classification of Industries 86 -- 4.4 Discussion and Conclusions 90 -- References 92 -- 5 Data-Driven Tariff Design for Equitable Energy Distribution 95 Salah Bahramara, Hamidreza Arasteh, Asrin Seyedzahedi, and Khabat Ghamari -- 5.1 Introduction 95 -- 5.1.1 Literature Review and Contributions 96 -- 5.1.2 Chapter Organization 97 -- 5.2 Proposed Approach and Formulations 97 -- 5.3 Describing the Case Study 98 -- 5.4 Simulation Results 100 -- 5.5 Conclusions and Future Works 100 -- References 105 -- 6 Applying Artificial Intelligence to Improve the Penetration of Renewable Energy in Power Systems 107 Abbas Marini and Seyed Mohsen Hashemi -- 6.1 Introduction 107 -- 6.2 Machine Learning Techniques 109 -- 6.2.1 Artificial Neural Network and Deep Neural Network 110 -- 6.2.2 Convolutional Neural Network 111 -- 6.2.3 Recurrent Neural Network 111 -- 6.2.4 Long Short-Term Memory 112 -- 6.3 General View of ML/DL Methods for RES Integration 112 -- 6.3.1 Data Preprocessing 114 -- 6.3.1.1 Normalization 115 -- 6.3.1.2 Wrong/Missing Values and Outliers 115 -- 6.3.1.3 Data Resolution 115 -- 6.3.1.4 Inactive Time Data 116 -- 6.3.1.5 Data Augmentation 116 -- 6.3.1.6 Correlation 116 -- 6.3.1.7 Data Clustering 116 -- 6.3.2 Deterministic/Probabilistic Forecasting Methods 116 -- 6.3.2.1 Deterministic Methods 116 -- 6.3.2.2 Probabilistic Forecasting Methods 119 -- 6.3.3 Evaluation Measures 119 -- 6.4 ML/DL Application for Integration of RES 121 -- 6.4.1 Renewable Resources Data Prediction/Planning 122 -- 6.4.2 RES Power Generation Prediction/Operation 125 -- 6.4.3 Electric Load and Demand Forecasting 126 -- 6.4.4 Stability Analysis 127 -- 6.4.4.1 Security Assessment 128 -- 6.4.4.2 Stability Assessment 129 -- 6.5 Integrated Machine Learning and Optimization Approach 129 -- 6.6 Conclusion 131 -- References 132 -- 7 Machine Learning-Based Solutions for Renewable Energy Integration: Applications, Optimization, and Grid Stability 135 Ali Paeizi, Mohammad Mehdi Amiri, Sasan Azad, and Mohammad Taghi Ameli -- 7.1 Introduction 135 -- 7.2 Machine Learning Importance in RESs Sector 137 -- 7.2.1 AI-Based Algorithms in RESs 137 -- 7.2.2 ML Algorithms Application in RESs 140 -- 7.3 Role of ML in Optimizing Renewable Energy Generation 150 -- 7.3.1 Different Programming Models in RES Optimization 150 -- 7.3.2 Optimization Objectives in RESs 150 -- 7.3.3 ML Applications in Optimizing Renewable Energy Generation 151 -- 7.4 Ensuring Grid Stability Through ML-Based Forecasting 155 -- 7.4.1 Grid Stability Forecasting 155 -- 7.4.2 Grid Stability Through ML-Based Forecasting 157 -- 7.5 Challenges and Future Direction in ML-Based Approaches to RESs 159 -- 7.5.1 Challenges in ML-Based Approaches to RESs 160 -- 7.5.2 Future Directions in ML-Based Approaches to RESs 161 -- 7.6 Conclusion 162 -- References 163 -- 8 Application of Artificial Neural Networks in Solar Photovoltaic Power Forecasting 167 Hamid Jabari, Afshin Ebrahimi, Ardalan Shafiei-Ghazani, and Farkhondeh Jabari -- 8.1 RES Share inWorld Energy Transition 167 -- 8.2 Applications of PV Panels in Energy Systems 168 -- 8.3 Disadvantages of PV Panels 169 -- 8.4 Importance of PV Power Forecasting 170 -- 8.5 Proposed Algorithm for PV Power Prediction 170 -- 8.6 Numerical Results and Discussions 172 -- 8.7 Concluding Remarks 172 -- References 175 -- 9 Power System Resilience Evaluation: Data Challenges and Solutions 179 Mohammad Reza Sheibani, Habibollah Raoufi, and Javad Nezafat Namini -- 9.1 Introduction 179 -- 9.2 A Review of Power System Resilience Metrics 180 -- 9.3 The General Framework for the Resilience Assessment of the Power System 182 -- 9.4 Data Required for Power System Resilience Studies 182 -- 9.4.1 Data of Natural Origin 184 -- 9.4.2 Basic Data of the Power System 184 -- 9.4.3 Data on Failure and Restoration Rates 186 -- 9.5 Data Analysis and Correction 187 -- 9.6 Disaster Forecasting in Power System Resilience Studies 188 -- 9.7 Modeling the Impact of Disaster on Power System Performance 189 -- 9.8 Static Model in Machine Learning 190 -- 9.9 Spatiotemporal Random Process 192 -- 9.9.1 Dynamic Model for Chain Failures 192 -- 9.9.2 Nonstationary Failure-Recovery-Impact Processes 192 -- 9.10 Lessons Learned and Concluding Remarks 193 -- 9.11 Future Work 194 -- References 194 -- 10 Nonintrusive Load Monitoring in Smart Grids Using Deep Learning Approach 197 Sobhan Naderian and Hamidreza Arasteh -- 10.1 Introduction 197 -- 10.2 Deep Learning Neural Networks 199 -- 10.2.1 RNN 199 -- 10.2.2 LSTM 199 -- 10.2.3 CNN 200 -- 10.2.4 Convolutional Layer 201 -- 10.2.5 Pooling Layer 201 -- 10.2.6 Fully Connected Layer 201 -- 10.3 The Proposed Method 201 -- 10.3.1 Pre-Processing and Preparing Data 201 -- 10.3.2 Proposed Method Architecture 202 -- 10.3.3 Proposed Method’s Parameters 202 -- 10.3.4 Performance Evaluation 203 -- 10.4 Results and Discussion 204 -- 10.5 Challenges and Future Trends 206 -- 10.6 Conclusion 206 -- References 207 -- 11 Power System Cyber-Physical Security and Resiliency Based on Data-Driven Methods 211 Hamed Delkhosh, Mahdi Ghaedi, and Maryam Azimi -- 11.1 Introduction 211 -- 11.2 Fundamental Concepts 212 -- 11.2.1 Cyber-Physical Power System (CPPS) 212 -- 11.2.2 Security and Resiliency 214 -- 11.3 Role of Data Analytics 215 -- 11.3.1 Basic Methods 215 -- 11.3.1.1 Supervised Learning (SL) 215 -- 11.3.1.2 Unsupervised Learning (UL) 216 -- 11.3.2 Advanced Techniques 216 -- 11.3.2.1 Dimensionality Reduction (DR) 217 -- 11.3.2.2 Feature Engineering 217 -- 11.3.2.3 Reinforcement Learning 217 -- 11.3.2.4 Integrated
Models 218 -- 11.4 Interdependency Modeling 218 -- 11.4.1 Direct Modeling 220 -- 11.4.2 Testbeds 220 -- 11.4.3 Game-Theoretic 221 -- 11.4.4 Machine Learning 222 -- 11.5 Cyber-Physical Threats 223 -- 11.5.1 Physical Attacks 224 -- 11.5.2 Cyberattacks 225 -- 11.5.2.1 Confidentiality 225 -- 11.5.2.2 Availability 226 -- 11.5.2.3 Integrity 226 -- 11.5.3 Coordinated Attacks 227 -- 11.6 Defense Framework 228 -- 11.6.1 Preventive Measures 228 -- 11.6.1.1 Supply Chain Security 229 -- 11.6.1.2 Access Control 229 -- 11.6.1.3 ...
Özet:
"This book offers an in-depth exploration of the relationship between data mining and power systems, with a strong emphasis on energy management and tariff optimization. It navigates the complexities of modern power networks, where renewable energy integration, demand fluctuations, and evolving consumer expectations necessitate innovative solutions. By bridging the gap between theory and application, the book empowers professionals and researchers to harness data-driven paradigms for transforming power systems. Readers will acquire an understanding of how data-driven paradigms can revolutionize power systems, and will gain the ability to optimize energy consumption, reduce costs, and design tariffs that are both fair and economically viable. By use of real-world applications, readers will have the tools to navigate the challenges of renewable energy integration and evolving grid dynamics. This book offers a roadmap to a greener, more efficient, and equitable energy future."-- Provided by publisher.
Notlar:
John Wiley and Sons
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781394290307Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 600276-1001 | TK3091 .D347 2026 | Arıyor... | Arıyor... |
