Transportation electrification : breakthroughs in electrified vehicles, aircraft, rolling stock, and watercraft için kapak resmi
Başlık:
Transportation electrification : breakthroughs in electrified vehicles, aircraft, rolling stock, and watercraft
Yazar:
Mohamed, Ahmed A., editor.
ISBN:
9781119812357

9781119812340

9781119812333
Fiziksel Tanımlama:
1 online resource (xxvii, 521 pages) : illustrations (some color).
Seri:
IEEE press series on power and energy systems ; 122
İçerik:
About the Editors xvii -- List of Contributors xix -- Introduction xxiii -- 1 Electrical Machines for Traction and Propulsion Applications 1 Ayman M. EL-Refaie -- 1.1 Introduction 1 -- 1.2 Light-Duty Vehicles 1 -- 1.3 Medium- and Heavy-Duty Vehicles 7 -- 1.4 Off-Highway Vehicles 9 -- 1.5 Locomotives 9 -- 1.6 Ship Propulsion 10 -- 1.7 High Specific Torque/Power Electrical Machines 13 -- 1.7.1 Electrical Machines for Land Vehicles 13 -- 1.7.2 Electrical Machines for Aerospace Applications 15 -- 1.7.3 Key System Tradeoffs and Considerations 21 -- 1.7.3.1 Specific Power vs Efficiency 21 -- 1.7.3.2 Fault Tolerance 21 -- 1.7.3.3 System Voltage 21 -- 1.7.3.4 Machine Controllability 22 -- 1.8 How Does the Future Look Like? 22 -- References 25 -- 2 Advances and Developments in Batteries and Charging Technologies 27 Satish Chikkannanavar and Gunho Kwak -- 2.1 Introduction 27 -- 2.2 Advances in Cathodes/Anodes Covering Energy Density Increase for EV Applications 27 -- 2.2.1 Cathode Challenges for High Energy Density 28 -- 2.2.2 Anode Challenges for High Energy Density 30 -- 2.3 High Power/Energy Cell Designs for xEVs 31 -- 2.4 Post Li-Ion Batteries: Solid-State Batteries 32 -- 2.4.1 Roadmap and Collaborative Relationships 33 -- 2.4.2 Current Development Status and Key Challenges 33 -- 2.5 Advances in Charging Batteries 36 -- 2.5.1 Methods of Fast Charging Batteries 36 -- 2.5.2 Li Plating Effects 37 -- 2.5.3 Overcharge Induced Thermal Runaway 38 -- 2.6 Degradation Considerations 40 -- 2.7 Future Outlook 42 -- Acronyms 43 -- References 43 -- 3 Applications of Wide Bandgap (WBG) Devices in the Transportation Sector. Recent Advances in (WBG) Semiconductor Material (e.g. Silicon Carbide and Gallium Nitride) and Circuit Topologies 47 Amir Ranjbar -- 3.1 History of Semiconductor Technology Evolution 47 -- 3.2 Semiconductor Technologies for Transportation Electrification 49 -- 3.2.1 Trends in Transportation Electrification 49 -- 3.3 Challenges Associated with GaNs in Practical Applications 53 -- 3.3.1 Device Physics Level Challenges with GaNs 53 -- 3.3.1.1 Electron Trapping 53 -- 3.3.1.2 Gate Edge Degradation 54 -- 3.3.1.3 Punch Through Current 54 -- 3.3.1.4 Substrate Choice 54 -- 3.3.2 Application Level Challenges with GaNs 55 -- 3.3.2.1 GaN's Narrow Gate Voltage Margin 55 -- 3.3.2.2 dv/dt Immunity and False Turn-On in GaN Devices 57 -- 3.3.2.3 di/dt Immunity in GaNs 57 -- 3.4 SiC-MOSFET Challenges in Transportation Electrification 58 -- 3.4.1 Low Gain of SiC-MOSFETs 58 -- 3.4.2 Fault Detection in SiC-MOSFETs 59 -- 3.4.3 Driving SiC-MOSFETs 60 -- 3.4.4 Maximum Gate Voltage Swing in SiC-MOSFETs 60 -- 3.4.5 Layout Considerations 61 -- 3.5 Advanced Power Module Packaging to Accommodate WBG Devices 61 -- 3.5.1 Advanced Substrate Materials 63 -- 3.5.2 Advanced Die Attach Methods 64 -- 3.5.3 Interconnection 64 -- 3.5.4 Advanced Encapsulation Materials 67 -- 3.5.5 Advanced Cooling Methods 68 -- 3.6 Summary 69 -- References 70 -- 4 An Overview of Inductive Power Transfer Technology for Static and Dynamic EV Battery Charging 73 Ahmed A. S. Mohamed, Ahmed A. Shaier, and Hamid Metwally -- 4.1 Introduction 73 -- 4.2 IPT System Components 74 -- 4.3 Static IPT System 75 -- 4.3.1 Coupler Components 76 -- 4.3.2 Structures of Inductive Pad 78 -- 4.3.3 Research and Development (R&D) and Standardization Activities 79 -- 4.4 Dynamic IPT System 83 -- 4.4.1 DIPT with a Single Long Coil Track 84 -- 4.4.2 DIPT with Segmented Coil Array 86 -- 4.4.3 R&D and Standardization Activities 90 -- 4.4.3.1 Historical Background 90 -- 4.4.3.2 R&D on DIPT 91 -- 4.5 Quasi-Dynamic IPT System 94 -- 4.6 Technology Challenges and Opportunities 94 -- 4.7 Conclusion 95 -- References 95 -- 5 Effectiveness Analysis of Control Strategies in Acoustic Noise and Vibration Reduction of PMSM-Driven Coupled System for EV and HEV Applications 105 Rishi Kant Thakur, Rajesh Manjibhai Pindoriya, Rajeev Kumar, and Bharat Singh Rajpurohit -- 5.1 Chapter Organization 105 -- 5.2 Origin of ANV and its Consequences in the PMSM-Based Coupled System 105 -- 5.2.1 Mechanical Noise 106 -- 5.2.2 Electromagnetic Noise 106 -- 5.2.3 Aerodynamic Sources 108 -- 5.3 Recent Trends of Control Strategies for ANV Reduction 108 -- 5.3.1 Control Aspects at the Site of Vibration (Mechanical) 108 -- 5.3.2 Control Aspects at the Source of Vibration (Electrical) 109 -- 5.4 Detailing of PMSM-Driven Experimental Setup 111 -- 5.5 Methodology of Various Control Strategies and Their Implementation for ANV Reduction 113 -- 5.5.1 Pseudorandom Triangular Pulse Width Modulation Technique (PTPWM) 113 -- 5.5.2 Random Pulse Position Pulse Width Modulation Technique (RPPM) 114 -- 5.6 Analysis of Torsional Vibration Response at Resonance 116 -- 5.7 Implementation of MPF Accuracy Enhancement Technique in Lumped Model for Number of Modes or DoF Selection 118 -- 5.7.1 Mathematical Modeling of Torsional Vibration Equation for All Lumped Elements 118 -- 5.7.2 Calculation of Parameters Required in Resonance Response of Torsional Vibration 120 -- 5.7.3 Natural Frequency, Mode Shape, and Orthonormalization of Modes 120 -- 5.7.4 Calculation of Computationally Optimum Number of Lumped Elements 123 -- 5.7.4.1 Calculation of Coefficient Vector {L} 123 -- 5.7.4.2 Calculation of Model Participation Factor (MPF) 123 -- 5.7.4.3 Calculation of Effective Mass 123 -- 5.8 Extended Mathematical Modeling for the Effectiveness of Control Strategies Over Torsional Vibration Reduction 125 -- 5.8.1 Calculation of Generalized Damping Matrix ([Cg]) 126 -- 5.8.2 Calculation of Generalized Torque Corresponding to Each Control Strategy 127 -- 5.9 Results and Discussion 128 -- 5.9.1 Validation of Torsional Vibration Response at Resonance 128 -- 5.9.2 Analysis of Dynamic Response Corresponding to Various Control Strategies 128 -- 5.9.3 Simulation Results of SPWM, RPPM, and PTPWM Techniques for PMSM Drive 128 -- 5.9.4 Experimental Results of SPWM, RPPM, and PTPWM Techniques for PMSM Drive 131 -- 5.10 Conclusions and Future Scope 136 -- References 136 -- 6 Challenges and Applications of Blockchain Technology in Electric Road Vehicles 139 Nabeel Mehdi -- 6.1 Mobility and Electric Vehicles 139 -- 6.2 Electric Vehicle Overview 140 -- 6.3 Challenges of the Electric Vehicle Industry 141 -- 6.3.1 Range Anxiety 141 -- 6.3.2 Lengthy Charging Times 142 -- 6.3.3 Battery Safety Concerns 142 -- 6.3.4 Lack of Standardization 143 -- 6.3.5 Electricity Grid Disruption 144 -- 6.3.6 Battery Waste 146 -- 6.3.7 Cyber-Security Hazard 146 -- 6.4 Applications of Blockchain Technology 146 -- 6.4.1 Energy Blockchain Ledger 148 -- 6.4.2 Blockchain-Powered Billing in E-mobility Systems 148 -- 6.4.3 Charging-as-a-Service (CaaS) Ecosystem 150 -- 6.4.4 Electric Vehicle Battery Management with Blockchain 151 -- 6.4.5 Vehicle to Grid (V2G) 151 -- 6.4.6 Blockchain-Enabled Security in Electric Vehicles Computing 152 -- 6.4.7 Privacy-Preserving Blockchain-Based EV Charging 153 -- 6.4.8 Battery Analytics 153 -- 6.4.9 Supply-Chain Traceability and Provenance 154 -- 6.5 Vehicle Insurance Management 155 -- 6.5.1 Electric Vehicle Crypto Mining 155 -- 6.6 Summary 156 -- References 157 -- 7 Starter/Generator Systems and Solid-State Power Controllers 159 Tao Yang, Xiaoyu Lang, and Zhen Huang -- 7.1 Background 159 -- 7.2 Future Design Options 160 -- 7.3 The Starters/Generators and Their Power Electronics Control 162 -- 7.4 System Analysis and Control Design 163 -- 7.4.1 Current Control Design 164 -- 7.4.2 Field-Weakening Control Design 167 -- 7.4.3 Analysis and Control Design of the DC Voltage Loop 170 -- 7.4.4 DC Bus Voltage Control: The Control Plant 170 -- 7.4.5 DC Bus Voltage Control Design 172 -- 7.4.6 Simulation Results of the Single-Bus Power-Generation Center 176 -- 7.4.7 Appendix 178 -- 7.5 The Solid-State Power Controllers and the Protection Features 180 -- 7.5.1 Background of Solid-State Power Controllers 180 -- 7.5.2 Design of Solid-State Power Controllers 181 -- 7.5.3 Protection of Solid-State Power Controllers 182 -- References 186 -- 8 DC-DC Converter and On-board DC Microgrid Stability 189 Giampaolo Buticchi and Jiajun Yang -- 8.1 Introduction 189 -- 8.2 The Dual Active Bridge Converter 189 -- 8.3 The LLC Series-Resonant Converter 192 -- 8.4 Constant Power Load 194 -- 8.5 Stability Criteria 194 -- 8.6 Impedance Modeling and Stability Analysis 196 -- 8.6.1 Impedance Model of PMSG 196 -- 8.6.2 Controller Design 197 -- 8.6.3 Impedance Model of DAB Converter 199 -- 8.6.4 Impedance-Based Stability

Analysis 201 -- 8.6.5 Specifications 202 -- 8.6.6 Impedance Model Validation 203 -- 8.6.7 System Instability 204 -- 8.6.8 Proposed Control Techniques for Stabilization 204 -- 8.7 Conclusion 206 -- References 206 -- 9 Packed U-Cell Inverter and Its Variants with Fault Tolerant Capabilities for More Electric Aircraft 209 Haroon Rehman, Mohd Tariq, Hasan Iqbal, Arif I. Sarwat, and Adil Sarwar -- 9.1 Introduction 209 -- 9.2 Power System Architecture in MEA 210 -- 9.3 Power Converters in MEA 212 -- 9.4 PUC Topologies and Control 215 -- 9.5 Fault Tolerant Capability of PUC Inverter 218 -- 9.6 Results and Discussion 220 -- 9.7 Conclusions 225 -- Acknowledgments 225 -- References 226 -- 10 Standards and Regulations Pertaining to Aircraft 231 Lujia Chen, Prem Ranjan, Qinghua Han, Abir Alabani, and Ian Cotton -- 10.1 Introduction 231 -- 10.2 Power Generation 232 -- 10.2.1 Characteristics of Aircraft Electrical Systems 232 -- 10.2.2 Electrical Machines 233 -- 10.2.3 Power Conversion 234 -- 10.2.4 Batteries 235 -- 10.2.5 Challenges for Higher Voltage Aerospace Systems 236 -- 10.3 Cable 236 -- 10.3.1 Cable Component and Type 236 -- 10.3.2 Digital Data and Signal Transmission 237 -- 10.3.3 Cable Identification Marking 237 -- 10.3.4 Cable Test Specifications 238 -- 10.4 Connectors and Contacts 238 -- 10.4.1 Classifi ...
Özet:
"This book covers recent technological breakthroughs pertinent to the electrification of vehicles, aircraft, rolling stock, and watercraft. Unlike existing publications that either focus on one of the modes of transportation or focus on multiple modes with minimal emphasis on their potential synergies, the editors adopt a hybrid bottom-up, top-down approach. The book includes chapters that dive into the deepest details of recent breakthroughs and advances in each mode of transportation. It also maintains a holistic vision of how/whether those advances can be applicable to other modes. Later chapters look at all modes of transportation panoramically, comparatively determine their current status of development, identify distinctive and common barriers, challenges, gaps of technology and knowledge, opportunities, and possible solutions."-- Provided by publisher.
Notlar:
John Wiley and Sons
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 597944-1001 TL220 .T66 2023
Arıyor...

On Order