
Başlık:
Functional auxiliary materials in batteries : synthesis, properties, and applications
Yazar:
Hu, Wei, author
ISBN:
9783527852789
9783527852765
9783527852772
Fiziksel Tanımlama:
1 online resource (416 pages)
İçerik:
Preface -- 1 Application of Organic Functional Additives in Batteries -- 1.1 Introduction -- 1.2 Fluorinated Additives -- 1.2.1 Functions of Fluorinated Additives -- 1.2.1.1 Improvement of Safety Performance -- 1.2.1.2 SEI-Forming Additives -- 1.2.1.3 High Oxidation Stability -- 1.2.1.4 Promotion of the Formation of Anion-Rich Solvation Structure -- 1.2.1.5 Reduction of Desolvation Barrier -- 1.2.2 Synergies of Fluoroethylene Carbonate with Other Compounds -- 1.2.2.1 Fluoroethylene Carbonate and Other Fluorinated Electrolytes -- 1.2.2.2 Fluoroethylene Carbonate and Lewis Base -- 1.2.2.3 Fluoroethylene Carbonate and Glyme -- 1.2.3 Drawbacks of Fluoroethylene Carbonate -- 1.2.3.1 Generation of HF Gas -- 1.2.3.2 Increase of Impedance and Loss of Impedance -- 1.2.3.3 Incompatibility with Other Electrodes -- 1.2.3.4 Recycling Issues -- 1.3 Nitro Additive -- 1.3.1 Functions of Nitro (NO - 3) -- 1.3.1.1 Participation in Solvation and Desolvation Structures -- 1.3.1.2 Formation of Inorganic-Rich SEI -- 1.3.1.3 CEI-Forming Additives -- 1.3.1.4 Functions in Lithium-Sulfur Batteries -- 1.3.1.5 Stabilization of Water Molecules -- 1.3.2 Organic Nitro Additive -- 1.3.2.1 Complex Nitrate-Based Additives -- 1.3.2.2 Complex Nitro-Based Additives -- 1.3.3 Drawbacks and Solutions of Nitro Additives -- 1.3.3.1 Low Solubility -- 1.3.3.2 Sacrificial Additives -- 1.3.3.3 High Decomposition Activation Energy of LiNO 3 -- 1.4 Nitrile Additives -- 1.4.1 Functions of Nitrile Additives -- 1.4.1.1 Plasticization -- 1.4.1.2 Facilitation of Ion Transport -- 1.4.1.3 Promotion of Lithium Salt Dissolution -- 1.4.1.4 Widening of the Electrochemical Window -- 1.4.1.5 Inhibiting the Decomposition of the Electrolyte -- 1.4.1.6 Low Flammability -- 1.4.1.7 Improvement of Polymer Flexibility -- 1.4.1.8 Modification of the Cathode Interface -- 1.4.1.9 Involvement in the Solvation Structure of Zn 2+ -- 1.4.1.10 Weakening of Ionic Association -- 1.4.1.11 Contribution to the Formation of SEI -- 1.4.2 Compatibility Analysis of Nitrile and Lithium Metal -- 1.4.2.1 Incompatibility of Nitrile and Lithium Metal -- 1.4.2.2 Improvement of the Compatibility of Nitrile and Lithium Metal -- 1.4.3 Other Drawbacks of Nitrile Additives -- 1.4.3.1 Low Mechanical Strength -- 1.4.3.2 Prone to Polymerization -- 1.4.3.3 Crystallinity -- 1.5 Phosphate Ester Additives -- 1.5.1 Functions of Phosphate Ester Additives -- 1.5.1.1 Flame Retardant -- 1.5.1.2 Stabilization of Cathodes and Anodes -- 1.5.1.3 Involvement in Solvation Structure Regulation -- 1.5.2 Drawbacks of Phosphate Ester -- 1.5.2.1 Incompatibility with Anodes -- 1.5.2.2 Improvement of the Compatibility of Phosphate Ester and Lithium Metal -- 1.6 Sulfate Ester Additives -- 1.6.1 Functions of Sulfate Ester Additives -- 1.6.1.1 SEI-Forming Additives -- 1.6.1.2 CEI-Forming Additives -- 1.7 Conclusion and Outlook -- References -- 2 Application of Biopolymers in Batteries -- 2.1 Introduction -- 2.2 Overview of Biopolymers -- 2.2.1 Carboxymethyl Cellulose (CMC) -- 2.2.2 Chitosan (CS) -- 2.2.3 Sodium Alginate (SA) -- 2.2.4 Lignin -- 2.2.5 Gum Arabic (GA) -- 2.2.6 Guar Gum (GG) -- 2.2.7 Xanthan Gum (XG) -- 2.2.8 Starch -- 2.2.9 Gelatin -- 2.2.10 Tragacanth Gum (TG) -- 2.2.11 Cellulose (CLS) -- 2.2.12 Trehalose (THL) -- 2.2.13 Citrulline (Cit) -- 2.2.14 Pectin -- 2.2.15 Carrageenan -- 2.3 Application of Biopolymers in Binders -- 2.3.1 Carboxymethyl Cellulose -- 2.3.2 Chitosan -- 2.3.3 Sodium Alginate -- 2.3.4 Lignin -- 2.3.5 Gum Arabic -- 2.3.6 Guar Gum and Xanthan Gum -- 2.3.7 Starch -- 2.3.8 Gelatin -- 2.3.9 Tragacanth Gum (TG) -- 2.4 Application of Biopolymers in Electrolytes -- 2.4.1 Cellulose -- 2.4.2 Chitosan -- 2.4.3 Lignin -- 2.4.4 Gelatin -- 2.5 Application of Biopolymers in Electrolyte Additives -- 2.5.1 Cellulose -- 2.5.2 Trehalose -- 2.5.3 Citrulline -- 2.5.4 Pectin -- 2.6 Application of Biopolymers in Separators -- 2.6.1 Cellulose -- 2.6.2 Starch -- 2.6.3 Carrageenan -- 2.7 Application of Biopolymers in Anode Functional Layers -- 2.7.1 Cellulose -- 2.7.2 Chitosan and Sodium Alginate -- 2.8 Conclusion and Outlook -- References -- 3A Application of Synthetic Polymers in Batteries: Carbon-chain Polymers -- 3A.1 Introduction -- 3A.2 Overview of Synthetic Polymers Materials -- 3A.2.1 Polyvinylidene Difluoride (PVDF) -- 3A.2.2 Polytetrafluoroethylene (PTFE) -- 3A.2.3 Styrene-Butadiene Rubber (SBR) -- 3A.2.4 Polyvinyl Alcohol (PVA) -- 3A.2.5 Polyacrylics (PA) -- 3A.2.6 Polyacrylonitrile (PAN) -- 3A.2.7 Polyvinyl Pyrrolidone (PVP) -- 3A.2.8 Polyolefin (PO) -- 3A.3 Application of Synthetic Polymers in Binders -- 3A.3.1 Polyvinylidene Difluoride -- 3A.3.2 Polytetrafluoroethylene -- 3A.3.3 Styrene-Butadiene Rubber -- 3A.3.4 Polyvinyl Alcohol -- 3A.3.5 Polyacrylics -- 3A.4 Application of Synthetic Polymers in Electrolytes -- 3A.4.1 Polyvinylidene Difluoride -- 3A.4.2 Polyacrylonitrile -- 3A.4.3 Polyacrylics -- 3A.4.4 Polyvinyl Alcohol -- 3A.5 Application of Synthetic Polymers in Battery Separators -- 3A.5.1 Polyolefin -- 3A.5.2 Polyvinylidene Difluoride -- 3A.5.3 Polyacrylonitrile -- 3A.5.4 Polyvinyl Alcohol -- 3A.6 Application of Synthetic Polymers in Anodes -- 3A.6.1 Polyacrylonitrile -- 3A.6.2 Polyacrylics -- 3A.7 Conclusions and Outlook -- References -- 3B Application of Synthetic Polymers in Batteries: Hetero-chain Polymers -- 3B.1 Introduction -- 3B.2 Overview of Synthetic Polymers Materials -- 3B.2.1 Epoxy Resin (EPR) -- 3B.2.2 Polyethylenimine (PEI) -- 3B.2.3 Polyurethane (PU) -- 3B.2.4 Polyethylene Oxide (PEO) -- 3B.2.5 Polyethylene Terephthalate (PET) -- 3B.2.6 Polyimide (PI) -- 3B.3 Application of Synthetic Polymers in Binders -- 3B.3.1 Epoxy Resin -- 3B.3.2 Polyethylenimine -- 3B.3.3 Polyurethane -- 3B.3.4 Polyimide -- 3B.4 Application of Synthetic Polymers in Electrolytes -- 3B.4.1 Epoxy Resin -- 3B.4.2 Polyurethane -- 3B.4.3 Polyethylene Oxide -- 3B.4.4 Polyimide -- 3B.5 Application of Synthetic Polymers in Battery Separators -- 3B.5.1 Polyethylene Terephthalate -- 3B.5.2 Polyimide -- 3B.6 Conclusions and Outlook -- References -- 4 Application of Nontraditional Organic Ionic Conductors in Batteries -- 4.1 Ionic Liquids -- 4.1.1 Introduction of Ionic Liquids -- 4.1.2 Development of Ionic Liquids -- 4.1.3 Catalog of Ionic Liquids -- 4.1.4 Advantages of Ionic Liquids for Batteries -- 4.1.5 Synthesis and Characterization Method of Ionic Liquids -- 4.1.6 Application of Ionic Liquids -- 4.2 Application of ILs in Batteries -- 4.2.1 Ionic Liquid Electrolyte -- 4.2.2 Ionic Liquid/Organic Solvent Electrolyte -- 4.2.3 Organic-Inorganic Composite Ionic Liquid Electrolyte -- 4.3 Single-Ion Conductive -- 4.3.1 Introduction of Single-Ion Conductive -- 4.3.2 Catalog of Single-Ion Conductive -- 4.4 Application of Single-Ion Conductive in Batteries -- 4.4.1 Organic Single-Ion Conductor Electrolyte -- 4.4.2 Organic-Inorganic Composite Single-Ion Conductor Electrolyte -- 4.5 Conclusions and Outlook -- References -- 5 Application of Self-Healing Materials in Batteries -- 5.1 Introduction -- 5.1.1 The Need for Battery Innovation -- 5.1.2 Overview of Self-Healing Materials -- 5.1.3 Benefits of Self-Healing Technologies in Batteries -- 5.1.4 Challenges in Scaling and Commercializing Self-Healing Materials -- 5.2 Types of Self-Healing Materials for Battery Applications -- 5.2.1 Physically Bonded Self-Healing Materials -- 5.2.2 Chemically Bonded Self-Healing Materials -- 5.2.3 Composite Self-Healing Materials with Multiple Repair Mechanisms -- 5.3 Applications of Self-Healing Materials in Batteries -- 5.3.1 Gel Polymer Electrolytes -- 5.3.2 Solid Polymer Electrolytes -- 5.3.3 Composite Electrolytes -- 5.3.4 Electrode Binders -- 5.4 Conclusions and Outlook -- References -- 6 Application of Low-Dimensional Materials in Batteries -- 6.1 Introduction -- 6.1.1 Lithium-Metal Batteries -- 6.1.2 Low-Dimensional Composite Materials -- 6.2 Low-Dimensional Composite Cathode Materials -- 6.2.1 Composite Methods for Low-Dimensional Cathode Materials -- 6.2.2 One-Dimensional Materials in Cathode -- 6.2.2.1 Carbon Nanotube (CNT) Materials -- 6.2.2.2 Carbon Nanofiber (CNF) Materials -- 6.2.3 Two-Dimensional Materials in Cathode -- 6.2.3.1 Graphene Materials -- 6.2.3.2 MXene Materials -- 6.3 Low-Dimensional Composite Materials in Separators -- 6.3.1 Zero-Dimensional Materials in Separator.
s -- 6.3.2 One-Dimensional Materials in Separators -- 6.3.3 Two-Dimensional Materials in Separators -- 6.4 Low-Dimensional Composite Current Collectors -- 6.4.1 Design of Current Collector -- 6.4.2 Nanocomposite Current Collectors -- 6.5 Low-Dimensional Composite Anode Materials -- 6.5.1 Formation of SEI and Failure Mechanism -- 6.5.2 Nanocomposite Lithium Metal Anodes -- 6.5.3 Low-Dimensional Materials in 3D-Printing Anodes -- 6.6 Conclusion and Outlook -- References -- 7 Applications of Porous Organic Framework Materials in Batteries -- 7.1 Introduction -- 7.1.1 Overview of Energy Demand and Battery Technologies -- 7.1.2 Limitations of Traditional Battery Material -- 7.1.3 Potential of Porous Organic Framework Materials for Energy Storage -- 7.2 Types of Porous Organic Framework Materials -- 7.2.1 Metal-Organic Frameworks (MOFs) -- 7.2.1.1 Types of MOFs -- 7.2.2 Covalent Organic Frameworks (COFs) -- 7.2.2.1 Types of COFs -- 7.2.3 Hydrogen-Bonded Organic Frameworks (HOFs) -- 7.2.3.1 Types of HOF -- 7.3 Applications of Porous Organic Framework Materials in Batteries -- 7.3.1 Applications in Electrode Materials -- 7.3.1.1 MOF as Electrode Materials -- 7.3.1.2 COF as Electrode Materials -- 7.3.1.3 HOF as Electrode Materials -- 7.3.2 Applications in Electrolytes and Electrolyte Additives -- 7.3.2.1 MOF as Electrolytes and Electrolyte Additives -- 7.3.2.2 COF as Electrolytes and Electrolyte Additives -- 7.3.2.3 HOF as Electrolytes and Electrolyte Additives -- 7.3.3 Applications in Catalysts and Catalyst Supports -- 7.3.3.1 MOF as Catalysts and Catalyst Supports -- 7.3.3.2 COF as Catalysts and Catalyst Supports -- 7.3.3.3 HOF as Catalysts and Catalyst Supports -- 7.3.4 Applications in Battery Separators -- 7.3.4.1 MOF as Battery Separator -- 7.3.4.2 COF as Battery Separator -- 7.3.4.3 HOF as Battery Separator -- 7.4 Conclusion and Outlook -- 7.4.1 Conclusion -- 7.4.2 Outlook -- References -- Index.
Özet:
Comprehensive reference exploring innovative auxiliary materials as a variety of battery components to enhance battery performance, safety, and longevity Functional Auxiliary Materials in Batteries: Synthesis, Properties, and Applications overviews the latest research on the applications of organic functional materials and low-dimensional structural materials as functional auxiliary materials in batteries. The book introduces the properties and preparation methods of these materials, summarizes the application mechanisms and conclusions, and puts forward novel insights and prospects towards more sustainable and environmentally friendly battery technologies. The first five chapters of this book expand around the application of organic functional materials in batteries, including separators, binders, electrolytes, and functional additives. The last two chapters of this book expand around the application of low-dimensional structural materials in batteries, including conductive agents and functional additives. Functional Auxiliary Materials in Batteries includes information on: Film forming, flame retardant, high voltage, and overcharge protection additives Adjusting factors in biopolymer materials such as molecular structure, composition, and morphology to precisely regulate and optimize battery performance Ionic liquids and single-ion conductors as a more secure and widely usable alternative to traditional organic electrolytes Self-healing materials, covering their positive effects on energy density, cost reduction, safety, and sustainability and their challenges including complexity and material compatibility Carbon-based materials that mitigate polysulfide shuttle effects and extend cycle life Functional Auxiliary Materials in Batteries is an essential reference for new researchers seeking to quickly understand the progress of research in related fields. The book is also valuable for senior researchers seeking inspiration for innovation.
Notlar:
John Wiley and Sons
Tür:
Elektronik Erişim:
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527852789Kopya:
Rafta:*
Kütüphane | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi | Materyal Ayırtma |
|---|---|---|---|---|---|
Arıyor... | E-Kitap | 599820-1001 | TK2941 | Arıyor... | Arıyor... |
