Modeling and optimization of optical communication networks için kapak resmi
Başlık:
Modeling and optimization of optical communication networks
Yazar:
Singh, Chandra, editor.
ISBN:
9781119839569

9781119839552
Fiziksel Tanımlama:
1 online resource
İçerik:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Investigation on Optical Sensors for Heart Rate Monitoring -- 1.1 Introduction -- 1.2 Overview of PPG -- 1.2.1 PPG Waveform -- 1.2.2 Photoplethysmography Waveforms Based on the Origin of Optical Concern -- 1.2.3 Photoplethysmography's Early on and Modern Records -- 1.2.4 Building Blocks of Photoplethysmography -- 1.2.5 Protocol Measurement and Reproducibility -- 1.3 Clinical Application -- Heart Rate Monitoring -- 1.4 Summary -- References -- Chapter 2 Adopting a Fusion Approach for Optical Amplification -- 2.1 Introduction -- 2.2 The Mechanism Involved -- 2.3 Types of Amplifier -- 2.3.1 Semiconductor Optical Amplifiers -- 2.3.1.1 Various Phases and Progress of SOA -- 2.3.2 Fiber Raman Amplifiers -- 2.3.3 Fiber Brillouin Amplifiers -- 2.3.4 Doped-Fiber Amplifiers -- 2.4 Hybrid Optical Amplifiers -- 2.4.1 EDFA and SOA Hybrid -- 2.4.2 EDFA and FRA Hybrid -- 2.4.3 RFA and SOA Hybrid -- 2.4.4 Combination of EYDWA as well as SOA -- 2.4.5 EDFA-EYCDFA Hybrid -- 2.4.6 TDFA Along with RFA Hybrid -- 2.4.7 EDFA and TDFA Hybrid -- 2.5 Applications -- 2.5.1 Telecom Infrastructure Optical Power Amplifier -- 2.6 Current Scenario -- 2.7 Discussion -- 2.8 Conclusions -- References -- Chapter 3 Optical Sensors -- 3.1 Introduction -- 3.2 Glass Fibers -- 3.3 Plastic Fibers -- 3.4 Optical Fiber Sensors Advantages Over Traditional Sensors -- 3.5 Fiber Optic Sensor Principles -- 3.6 Classification of Fiber Optic Sensors -- 3.6.1 Intrinsic Fiber Optic Sensor -- 3.6.2 Extrinsic Fiber Optic Sensor -- 3.6.3 Intensity-Modulated Sensors -- 3.6.3.1 Intensity Type Fiber Optic Sensor Using Evanescent Wave Coupling -- 3.6.3.2 Intensity Type Fiber Optic Sensor Using Microbend Sensor -- 3.6.4 Phase Modulated Fiber Optic Sensors -- 3.6.4.1 Fiber Optic Gyroscope -- 3.6.4.2 Fiber-Optic Current Sensor.

3.6.5 Polarization Modulated Fiber Optic Sensors -- 3.6.6 Physical Sensor -- 3.6.6.1 Temperature Sensors -- 3.6.6.2 Proximity Sensor -- 3.6.6.3 Depth/Pressure Sensor -- 3.6.7 Chemical Sensor -- 3.6.8 Bio-Medical Sensor -- 3.7 Optical Fiber Sensing Applications -- 3.7.1 Application in the Medicinal Field -- 3.7.2 Application in the Agriculture Field -- 3.7.3 Application in Civil Infrastructure -- 3.8 Conclusion -- References -- Chapter 4 Defective and Failure Sensor Detection and Removal in a Wireless Sensor Network -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Proposed Detection and Elimination Approach -- 4.3.1 Scanning Algorithm for Cut Tracking (SCT) -- 4.3.2 Eliminate Faulty Sensor Algorithm (EFS) -- 4.4 Results and Discussion -- 4.5 Performance Evaluation -- 4.6 Conclusion -- References -- Chapter 5 Optical Fiber and Prime Optical Devices for Optical Communication -- 5.1 Introduction -- 5.2 Optic Fiber Systems Development -- 5.3 Optical Fiber Transmission Link -- 5.4 Optical Sources Suited for Optical Fiber Communication -- 5.5 LED as Optical Source -- 5.6 Laser as Light Source -- 5.7 Optical Fiber -- 5.8 Fiber Materials -- 5.9 Benefits of Optical Fiber -- 5.10 Drawbacks of Optical Fiber -- 5.11 Recent Advancements in Fiber Technology -- 5.12 Photodetector -- 5.13 Future of Optical Fiber Communication -- 5.14 Applications of Optical Fibers in the Industry -- 5.15 Conclusion -- References -- Chapter 6 Evaluation of Lower Layer Parameters in Body Area Networks -- 6.1 Introduction -- 6.2 Problem Definition -- 6.3 Baseline MAC in IEEE 802.15.6 -- 6.4 Ultra Wideband (UWB) PHY -- 6.5 Castalia -- 6.5.1 Features -- 6.6 Methodology -- 6.6.1 Simulation Method in Castalia -- 6.6.2 Hardware Methodology -- 6.7 Results and Discussion -- 6.8 Hardware Setup Using Bluetooth Module -- 6.9 Hardware Setup Using ESP 12-E -- 6.10 Conclusions -- References.

Chapter 7 Analyzing a Microstrip Antenna Sensor Design for Achieving Biocompatibity -- 7.1 Introduction -- 7.2 Designing of Biomedical Antenna -- 7.3 Sensing Device for Biomedical Application -- 7.4 Conclusion -- References -- Chapter 8 Photonic Crystal Based Routers for All Optical Communication Networks -- 8.1 Introduction -- 8.2 Photonic Crystals -- 8.2.1 1D Photonic Crystals -- 8.2.2 2D Photonic Crystals -- 8.2.3 3D Photonic Crystals -- 8.2.4 Photonic Bandgap -- 8.2.5 Applications -- 8.3 Routers -- 8.4 Micro Ring Resonators -- 8.5 Optical Routers -- 8.5.1 Routers Based on PCRR -- 8.5.2 N x N Router Structures -- 8.5.2.1 3 x 3 Router -- 8.5.2.2 4 x 4 Router -- 8.5.2.3 6 x 6 Router -- 8.5.3 Routers Based on PC Line Defect -- 8.6 Summary -- References -- Chapter 9 Fiber Optic Communication: Evolution, Technology, Recent Developments, and Future Trends -- 9.1 Introduction -- 9.2 Basic Principles -- 9.3 Future Trends in Fiber Optics Communication -- 9.4 Advantages -- 9.5 Conclusion -- References -- Chapter 10 Difficulties of Fiber Optic Setup and Maintenance in a Developing Nation -- 10.1 Introduction -- 10.2 Related Works -- 10.3 Fiber Optic Cable -- 10.3.1 Single-Mode Cable -- 10.3.2 Multimode Cable -- 10.3.2.1 Step-Index Multimode Fiber -- 10.3.2.2 Graded-Index Multimode Fiber -- 10.3.3 Deployed Fiber Optics Cable -- 10.4 Fiber Optics Cable Deployment Strategies -- 10.4.1 Aerial Installation -- 10.4.2 Underground Installation -- 10.4.2.1 Direct-Buried -- 10.4.2.2 Installation in Duct -- 10.5 Deployment of Fiber Optics Throughout the World -- 10.5.1 Fiber Optics Deployment in India -- 10.5.2 Submarine Fiber Optic in India -- 10.5.3 Installation of Fiber Optic Cable in the Inland -- 10.6 Fiber Deployment Challenges -- 10.6.1 Deploying Fiber has a Number of Technical Difficulties -- 10.6.2 Right of Way -- 10.6.3 Administrative Challenges.

10.6.4 Post-Fiber Deployment Management -- 10.6.5 Fiber Optic Cable Deployment and Management Standards and Best Practices -- 10.7 Conclusion -- References -- Chapter 11 Machine Learning-Enabled Flexible Optical Transport Networks -- 11.1 Introduction -- 11.2 Review of SDM-EON Physical Models -- 11.2.1 Optical Fibers for SDM-EON -- 11.2.2 Switching Techniques for SDM-EON -- 11.3 Review of SDM-EON Resource Assignment Techniques -- 11.4 Research Challenges in SDM-EONs -- 11.5 Conclusion -- References -- Chapter 12 Role of Wavelength Division Multiplexing in Optical Communication -- 12.1 Introduction -- 12.2 Modules of an Optical Communication System -- 12.2.1 How a Fiber Optic Communication Works? -- 12.2.2 Codes of Fiber Optic Communication System -- 12.2.2.1 Dense Light Source -- 12.2.2.2 Low Loss Optical Fiber -- 12.2.3 Photo Detectors -- 12.3 Wavelength-Division Multiplexing (WDM) -- 12.3.1 Transceivers -- Transmitting Data as Light -- 12.3.2 Multiplexers Enhancing the Use of Fiber Channels -- 12.3.3 Categories of WDM -- 12.4 Modulation Formats in WDM Systems -- 12.4.1 Optical Modulator -- 12.4.1.1 Direct Modulation -- 12.4.1.2 External Modulation -- 12.4.2 Modulation Formats -- 12.4.2.1 Non Return to Zero (NRZ) -- 12.4.2.2 Return to Zero (RZ) -- 12.4.2.3 Chirped RZ (CRZ) -- 12.4.2.4 Carrier Suppressed RZ (CSRZ) -- 12.4.2.5 Differential Phase Shift Key (DPSK) -- 12.4.3 Uses of Wavelength Division Multiplexing -- References -- Chapter 13 Optical Ultra-Sensitive Nanoscale Biosensor Design for Water Analysis -- 13.1 Introduction -- 13.2 Related Work or Literature Survey -- 13.2.1 B. Cereus Spores' Study for Water Quality -- 13.2.2 History Use of Optical Property for Biosensing -- 13.2.3 Photonic Crystal -- 13.3 Tools and Techniques -- 13.3.1 Opti FDTD -- 13.3.2 EM Wave Equation -- 13.3.3 Optical Ring Resonator -- 13.3.4 Output Power Computation.

13.4 Proposed Design -- 13.4.1 Circular Resonator PHC Biosensor -- 13.4.2 Triangular Structure PHC Biosensor -- 13.5 Simulation -- 13.6 Result and Analysis -- 13.7 Conclusion and Future Scope -- References -- Chapter 14 A Study on Connected Cars-V2V Communication -- 14.1 Introduction -- 14.2 Literature Survey -- 14.3 Software Description -- 14.4 Methodology -- 14.5 Working -- 14.6 Advantages and Applications -- 14.7 Conclusion and Future Scope -- Future Scope -- References -- Chapter 15 Broadband Wireless Network Era in Wireless Communication -- Routing Theory and Practices -- 15.1 Introduction -- 15.2 Outline of Broadband Wireless Networking -- 15.2.1 Type of Broadband Wireless Networks -- 15.2.1.1 Fixed Networks -- 15.2.1.2 The Broadband Mobile Wireless Networks -- 15.2.2 BWN Network Structure -- 15.2.3 Wireless Broadband Applications -- 15.2.4 Promising Approaches Beyond BWN -- 15.3 Routing Mechanisms -- 15.4 Security Issues and Mechanisms in BWN -- 15.4.1 DoS Attack -- 15.4.2 Distributed Flooding DoS -- 15.4.3 Rogue and Selfish Backbone Devices -- 15.4.4 Authorization Flooding on Backbone Devices -- 15.4.5 Node Deprivation Attack -- 15.5 Conclusion -- References -- Chapter 16 Recent Trends in Optical Communication, Challenges and Opportunities -- 16.1 Introduction -- 16.2 Optical Fiber Communication -- 16.3 Applications of Optical Communication -- 16.4 Various Sectors of Optical Communication -- 16.5 Conclusion -- References -- Chapter 17 Photonic Communication Systems and Networks -- 17.1 Introduction -- 17.2 History of LiFi -- 17.3 LiFi Standards -- 17.4 Related Work -- 17.5 Methodology -- 17.6 Proposed Model -- 17.7 Experiment and Results -- 17.8 Applications -- 17.9 Conclusion -- Acknowledgment -- References -- Chapter 18 RSA-Based Encryption Approach for Preserving Confidentiality Against Factorization Attacks -- 18.1 Introduction.
Özet:
MODELING and OPTIMIZATION of OPTICAL COMMUNICATION NETWORKS Optical networks are an integral part of many of the technologies that we use every day. It is a constantly changing and evolving area, with new materials, processes, and applications coming online almost daily. This book provides a basis for discussing open principles, methods and research problems in the modeling of optical communication networks. It also provides a systematic overview of the state-of-the-art research efforts and potential research directions dealing with optical communication metworks. It also simultaneously focuses on extending the limits of currently used systems encompassing optical and wireless domains and explores novel research on wireless and optical techniques and systems, describing practical implementation activities, results and issues. A handbook on applications for both academia and industry, this exciting new volume includes detailed discussions on real-world case studies on trends and emerging technologies associated with modeling of optical communication networks. This book also describes several numerical models and algorithms for simulation and optimization of optical communication networks. Modeling and optimization presents several opportunities for automating operations and introducing intelligent decision making in network planning and in dynamic control and management of network resources, including issues like connection establishment, self-configuration, and self-optimization, through prediction and estimation by utilizing present network state and historical data. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores the latest developments in applications like photonics, high speed communication systems and networks, visible light communication, nano-photonics, wireless, and MIMO systems.
Notlar:
John Wiley and Sons
Yazar Ek Girişi:
Ayırtma:
Kopya:

Rafta:*

Kütüphane
Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Materyal Ayırtma
Arıyor...
E-Kitap 598692-1001 TK5103.59 .M63 2023
Arıyor...

On Order